

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

@title CodeObjects Architecture

CodeObjects Architecture

Code objects are Ruby objects that describe the code being documented. For instance,
all classes, modules, methods, etc. are all extracted from the Ruby source as code
objects. All of these code objects extend from the {YARD::CodeObjects::Base} class, which
provides basic attributes like source location, source code, name and path.

CodeObjects Organization

Code objects are divided into two basic types. {YARD::CodeObjects::NamespaceObject NamespaceObjects}
and non-namespace objects. A namespace object refers to any object in Ruby that can have
other objects defined inside of it. In the context of Ruby, this specifically means
modules and classes (both of which are subclasses of NamespaceObject). These objects
act like tree structures, maintaining a list of all of their direct children. All non
namespace objects are simply subclasses of the Base class. The {YARD::CodeObjects::RootObject RootObject}
is a special kind of NamespaceObject which refers to the top level namespace in Ruby.
Methods that accept a namespace object as a parameter should also accept the symbol
:root as a shortcut for the root object.

The following is an overview of the classes within the CodeObjects namespace:

[image: CodeObjects Class Diagram]

Unique Path Representation

All CodeObjects are uniquely defined by their implementation of {YARD::CodeObjects::Base#path}.
This path is used to locate or store a code object in the {YARD::Registry}. It is therefore
essential that any Base subclass return a unique String value for #path so that the
object may co-exist with other objects in the Registry.

In practice, a path is simply the conventional Ruby representation of a class,
module, constant, class variable or method. For example, the following objects
would have the following respective paths:

	Class Klass inside module Mod: Mod::Klass

	Instance method bar inside class Foo: Foo#bar

	Class method bar inside class Foo: Foo.bar

	Constant VERSION inside class YARD: YARD::VERSION

	Class variable @@abc inside class A: A::@@abc

Registry

CodeObjects classes are coupled with the {YARD::Registry} class which keeps track of
all instantiated code objects. This is an explicit design choice to allow objects
to be fetched, cached, imported and exported from a centralized location. As mentioned
above, this coupling is a result of the fact that each object is uniquely identified by
its path, which is used to implement lookups. You can read more about the registry
in the {YARD::Registry} class.

Identity Map

Code objects are instantiated using an identity-map like implementation that guarantees
only one unique Ruby object exists for an object described by a specific path. This
allows developers to create a code object without checking if it already exists in
the {YARD::Registry}. The following example will only create one object:

id = ClassObject.new(:root, "MyClass").object_id #=> 13352
ClassObject.new(:root, "MyClass").object_id #=> 13352

Proxy Objects

In addition to providing access to existing objects, a {YARD::CodeObjects::Proxy}
class exists which can represent an object at a path that may or may not have been
created. This is necessary to represent a reference to an object in code that is
never defined in the same body of source code, or perhaps defined later. If any
attributes of a proxy are accessed, it will immediately be resolved to the object
at its declared path. In the case where such an object exists, it will act as
a delegate to the object. However, if the object does not exist, a warning will
be raised. Whenever arbitrary code objects are used, care should be taken in
order to make sure attributes are not accessed on unresolvable proxies. An
unresolvable proxy will return a class name of Proxy and #type of :proxy,
for example:

P(:InvalidObject).type == :proxy #=> true
P(:InvalidObject).is_a?(Proxy) #=> true

Adding Data to Code Objects

Code objects act as hash-like structures that allow any arbitrary value to be set.
This allows easy extending of existing objects without creating custom subclasses.
For instance, to add a timestamp to a method object (when it was modified, maybe),
it is possible to simply do:

object = MethodObject.new(:root, "my_method")
object[:modified_at] = Time.now

This value can now be retrieved on this object both by the hash [] syntax as
well as like any other method:

object.modified_at #=> 2009-06-03 20:08:46 -0400

Creating a Custom CodeObject

It should first be mentioned that creating a custom code object should not be
necessary in most cases, except when functionality that cannot be represented
by classical Ruby objects is added. A good example might be a test class,
which although is technically a Ruby class, has a significantly different purpose
in documentation and needs a different set of metadata, as well as its own
representation in documentation.

The {YARD::CodeObjects::Base#path} implementation is the most important part of the
code object architecture. The first thing any custom code object must guarantee is
that its path value is unique among all other objects. The recommended way to do this
with custom objects is to add a descriptive prefix to the path. For example, the
following is an implementation of the path for a hypothetical FooObject:

def path
 "__FooPrefix" + sep + super
end

Note that if our FooObject is a NamespaceObject, meaning if it can have child
FooObjects defined inside of it, you may need to verify that the prefix is only
applied once.

@title Getting Started Guide

Getting Started with YARD

There are a few ways which YARD can be of use to you or your project. This
document will cover the most common ways to use YARD:

	Documenting Code with YARD

	Using YARD to Generate Documentation

	Configuring YARD

	Extending YARD

	Templating YARD

	Plugin Support

[bookmark: docing]

Documenting Code with YARD

By default, YARD is compatible with the same RDoc syntax most Ruby developers
are already familiar with. However, one of the biggest advantages of YARD is
the extended meta-data syntax, commonly known as "tags", that you can use
to express small bits of information in a structured and formal manner. While
RDoc syntax expects you to describe your method in a completely free-form
manner, YARD recommends declaring your parameters, return types, etc. with
the @tag syntax, which makes outputting the documentation more consistent
and easier to read. Consider the RDoc documentation for a method to_format:

Converts the object into textual markup given a specific `format`
(defaults to `:html`)
#
== Parameters:
format::
A Symbol declaring the format to convert the object to. This
can be `:text` or `:html`.
#
== Returns:
A string representing the object in a specified
format.
#
def to_format(format = :html)
 # format the object
end

While this may seem easy enough to read and understand, it's hard for a machine
to properly pull this data back out of our documentation. Also we've tied our
markup to our content, and now our documentation becomes hard to maintain if
we decide later to change our markup style (maybe we don't want the ":" suffix
on our headers anymore).

In YARD, we would simply define our method as:

Converts the object into textual markup given a specific format.
#
@param format [Symbol] the format type, `:text` or `:html`
@return [String] the object converted into the expected format.
def to_format(format = :html)
 # format the object
end

Using tags we can add semantic metadata to our code without worrying about
presentation. YARD will handle presentation for us when we decide to generate
documentation later.

Which Markup Format?

YARD does not impose a specific markup. The above example uses standard RDoc
markup formatting, but YARD also supports textile and markdown via the
command-line switch or .yardopts file (see below). This means that you are
free to use whatever formatting you like. This guide is actually written
using markdown. YARD, however, does add a few important syntaxes that are
processed no matter which markup formatting you use, such as tag support
and inter-document linking. These syntaxes are discussed below.

Adding Tags to Documentation

The tag syntax that YARD uses is the same @tag-style syntax you may have seen
if you've ever coded in Java, Python, PHP, Objective-C or a myriad of other
languages. The following tag adds an author tag to your class:

@author Loren Segal
class MyClass
end

To allow for large amounts of text, the @tag syntax will recognize any indented
lines following a tag as part of the tag data. For example:

@deprecated Use {#my_new_method} instead of this method because
it uses a library that is no longer supported in Ruby 1.9.
The new method accepts the same parameters.
def mymethod
end

List of Tags

A list of tags can be found in {file:docs/Tags.md#taglist}

Reference Tags

To reduce the amount of duplication in writing documentation for repetitive
code, YARD introduces "reference tags", which are not quite tags, but not
quite docstrings either. In a sense, they are tag (and docstring) modifiers.
Basically, any docstring (or tag) that begins with "(see OTHEROBJECT)" will
implicitly link the docstring or tag to the "OTHEROBJECT", copying any data
from that docstring/tag into your current object. Consider the example:

class MyWebServer
 # Handles a request
 # @param request [Request] the request object
 # @return [String] the resulting webpage
 def get(request) "hello" end

 # (see #get)
 def post(request) "hello" end
end

The above #post method takes the docstring and all tags (param and return)
of the #get method. When you generate HTML documentation, you will see this
duplication automatically, so you don't have to manually type it out. We can
also add our own custom docstring information below the "see" reference, and
whatever we write will be appended to the docstring:

(see #get)
@note This method may modify our application state!
def post(request) self.state += 1; "hello" end

Here we added another tag, but we could have also added plain text. The
text must be appended after the (see ...) statement, preferably on
a separate line.

Note that we don't have to "refer" the whole docstring. We can also link
individual tags instead. Since "get" and "post" actually have different
descriptions, a more accurate example would be to only refer our parameter
and return tags:

class MyWebServer
 # Handles a GET request
 # @param request [Request] the request object
 # @return [String] the resulting webpage
 def get(request) "hello" end

 # Handles a POST request
 # @note This method may modify our application state!
 # @param (see #get)
 # @return (see #get)
 def post(request) self.state += 1; "hello" end
end

The above copies all of the param and return tags from #get. Note that you
cannot copy individual tags of a specific type with this syntax.

Declaring Types

Some tags also have an optional "types" field which let us declare a list of
types associated with the tag. For instance, a return tag can be declared
with or without a types field.

@return [String, nil] the contents of our object or nil
if the object has not been filled with data.
def validate; end

We don't care about the "type" here:
@return the object
def to_obj; end

The list of types is in the form [type1, type2, ...] and is mostly free-form,
so we can also specify duck-types or constant values. For example:

@param argname [#to_s] any object that responds to `#to_s`
@param argname [true, false] only true or false

Note the latter example can be replaced by the meta-type "Boolean".
Another meta-type is "void", which stands for "no meaningful value"
and is used for return values. These meta-types are by convention
only, but are recommended.

List types can be specified in the form CollectionClass<ElementType, ...>.
For instance, consider the following Array that holds a set of Strings and
Symbols:

@param list [Array<String, Symbol>] the list of strings and symbols.

We mentioned that these type fields are "mostly" free-form. In truth, they
are defined "by convention". To view samples of common type specifications
and recommended conventions for writing type specifications, see
http://yardoc.org/types.html. Note that these
conventions may change every now and then, although we are working on a more
"formal" type specification proposal.

Documenting Attributes

To document a Ruby attribute, add documentation text above the attribute
definition.

Controls the amplitude of the waveform.
@return [Numeric] the amplitude of the waveform
attr_accessor :amplitude

As a short-hand syntax for declaring reader and writer attribute pairs,
YARD will automatically wire up the correct method types and information
by simply defining documentation in the @return tag. For example,
the following declaration will show the correct information for the
waveform attribute, both for the getter's return type and the
setter's value parameter type:

@return [Numeric] the amplitude of the waveform
attr_accessor :amplitude

In this case, the most important details for the attribute are the
object type declaration and its descriptive text.

Documentation for a Separate Attribute Writer

Usually an attribute will get and set a value using the same syntax,
so there is no reason to have separate documentation for an attribute
writer. In the above amplitude case, the Numeric type is both used
for the getter and setter types.

Sometimes, however, you might want to have separate documentation
for the getter and setter. In this case, you would still add
the documentation text to the getter declaration (or attr_accessor)
and use @overload tags to declare the separate docstrings. For example:

@overload amplitude
Gets the current waveform amplitude.
@return [Numeric] the amplitude of the waveform
@overload amplitude=(value)
Sets the new amplitude.
@param value [Numeric] the new amplitude value
@note The new amplitude will only take effect if {#restart}
is called on the stream.

Note that by default, YARD exposes the reader portion of the attribute
in HTML output. If you have separate attr_reader and attr_writer
declarations, make sure to put your documentation (for both reader
and writer methods) on the reader declaration using @overload
tags as described above. For example:

@overload ...documentation here...
attr_reader :amplitude

This documentation will be ignored by YARD.
attr_writer :amplitude

Documenting Custom DSL Methods

Application code in Ruby often makes use of DSL style metaprogrammed methods.
The most common is the attr_accessor method, which of course has built-in
support in YARD. However, frameworks and libraries often expose custom
methods that perform similar metaprogramming tasks, and it is often useful
to document their functionality in your application. Consider the property
method in a project like DataMapper [http://datamapper.org], which creates
a typed attribute for a database model. The code might look like:

class Post
 include DataMapper::Resource

 property :title, String
end

As of version 0.7.0, YARD will automatically pick up on these basic methods if
you document them with a docstring. Therefore, simply adding some comments to
the code will cause it to generate documentation:

class Post
 include DataMapper::Resource

 # @return [String] the title property of the post
 property :title, String
end

Note that YARD uses the first argument in the method call to determine the
method name. In some cases, this would not be the method name, and you would
need to declare it manually. You can do so with the @!method directive:

@!method foo
create_a_foo_method

The @!method directive can also accept a full method signature with parameters:

@!method foo(name, opts = {})
create_a_foo_method

You can also set visibility and scope, or modify the method signature with
extra tags. The following adds documentation for a private class method:

@!method foo(opts = {})
The foo method!
@!scope class
@!visibility private
create_a_private_foo_class_method

Finally, you can tag a method as an attribute by replacing the @!method
tag with @!attribute. The @!attribute directive allows for the flags [r], [w],
or [rw] to declare a readonly, writeonly, or readwrite attribute, respectively.

@!attribute [w]
The writeonly foo attribute!
a_writeonly_attribute :foo

(Note that if the name can be automatically detected, you do not need to
specify it in the @!method or @!attribute directives)

However, you will notice a few drawbacks with this basic support:

	There is a fair bit of duplication in such documentation. Specifically, we
repeat the term String and title twice in the property example.

	We must write a code comment for this property to show up in the documentation.
If we do not write a comment, it is ignored.

Macros

Fortunately YARD 0.7.0 also adds macros, a powerful way to add support for
these DSL methods on the fly without writing extra plugins. Macros allow
you to interpolate arguments from the method call inside the docstring,
reducing duplication. If we re-wrote the property example from above
using a macro, it might look like:

class Post
 include DataMapper::Resource

 # @!macro dm.property
 # @return [$2] the $1 $0 of the post
 property :title, String
end

(Note that $0 represents the method call, in this case property. The rest
are arguments in the method call.)

The above example is equivalent to the first version shown in the previous
section. There is also some extra benefit to using this macro, in that we
can re-apply it to any other property in our class by simply calling on
the macro. The following:

@!macro dm.property
property :view_count, Integer

Would be equivalent to:

@return [Integer] the view_count property of the post
property :view_count, Integer

Finally, macros can be "attached" to method calls, allowing them to be implicitly
activated every time the method call is seen in the source code of the class,
or an inheriting class. By simply adding the [attach] flag, the macro
becomes implicit on future calls. All of the properties below get documented
by using this snippet:

class Post
 include DataMapper::Resource

 # @!macro [attach] dm.property
 # @return [$2] the $1 $0 of the post
 property :title, String
 property :view_count, Integer
 property :email, String
end

You can read more about macros in the {file:docs/Tags.md Tags Overview} document.

Customized YARD Markup

YARD supports a special syntax to link to other code objects, URLs, files,
or embed docstrings between documents. This syntax has the general form
of {Name OptionalTitle} (where OptionalTitle can have spaces, but Name
cannot).

Linking Objects {...}

To link another "object" (class, method, module, etc.), use the format:

{ObjectName#method OPTIONAL_TITLE}
{Class::CONSTANT My constant's title}
{#method_inside_current_namespace}

Without an explicit title, YARD will use the relative path to the object as
the link name. Note that you can also use relative paths inside the object
path to refer to an object inside the same namespace as your current docstring.

Note that the @see tag automatically links its data. You should not use
the link syntax in this tag:

@see #methodname <- Correct.
@see {#methodname} <- Incorrect.

If you want to use a Hash, prefix the first { with "!":

!{ :some_key => 'value' }

Linking URLs {http://...}

URLs are also linked using this {...} syntax:

{http://example.com Optional Title}
{mailto:email@example.com}

Linking Files {file:...}

Files can also be linked using this same syntax but by adding the file:
prefix to the object name. Files refer to extra readme files you added
via the command-line. Consider the following examples:

{file:docs/GettingStarted.md Getting Started}
{file:mypage.html#anchor Name}

As shown, you can also add an optional #anchor if the page is an HTML link.

Embedding Docstrings {include:...}

We saw the (see ...) syntax above, which allowed us to link an entire docstring
with another. Sometimes, however, we just want to copy docstring text without
tags. Using the same {...} syntax, but using the include: prefix, we can
embed a docstring (minus tags) at a specific point in the text.

This class is cool
@abstract
class Foo; end

This is another class. {include:Foo} too!
class Bar; end

The docstring for Bar becomes:

"This is another class. This class is cool too!"

Embedding Files {include:file:...}

You can embed the contents of files using {include:file:path/to/file},
similar to the {include:OBJECT} tag above. If the file uses a specific markup
type, it will be applied and embedded as marked up text. The following
shows how the tag can be used inside of comments:

Here is an example of a highlighted Ruby file:
#
{include:file:examples/test.rb}

Rendering Objects {render:...}

Entire objects can also be rendered in place in documentation. This can be
used for guide-style documentation which does not document the entire source
tree, but instead selectively renders important classes or methods. Consider
the following documentation inside of a README file:

!!!plain
= igLatinPay!

This library adds pig latin methods to the string class, allowing you
to transform sentences into pig latin.

{render:String#pig_latin}

You can also un-pig-latin-ify a word or sentence:

{render:String#de_pig_latin}

The above would render the methods in place inside the README document,
allowing you to summarize a small library in a single file.

[bookmark: using]

Using YARD to Generate Documentation

yard Executable

YARD ships with a single executable aptly named yard. In addition to
generating standard documentation for your project, you would use this tool
if you wanted to:

	Document all installed gems

	Run a local documentation server

	Generate UML diagrams using Graphviz [http://www.graphviz.org]

	View ri-style documentation

	Diff your documentation

	Analyze documentation statistics.

The following commands are available in YARD 0.6.x (see yard help for a
full list):

Usage: yard <command> [options]

Commands:
config Views or edits current global configuration
diff Returns the object diff of two gems or .yardoc files
doc Generates documentation
gems Builds YARD index for gems
graph Graphs class diagram using Graphviz
help Retrieves help for a command
ri A tool to view documentation in the console like `ri`
server Runs a local documentation server
stats Prints documentation statistics on a set of files

Note that yardoc is an alias for yard doc, and yri is an alias for
yard ri. These commands are maintained for backwards compatibility.

.yardopts Options File

Unless your documentation is very small, you'll end up needing to run yardoc
with many options. The yardoc tool will use the options found in this file.
It is recommended to check this in to your repository and distribute it with
your source. This file is placed at the root of your project (in the directory
you run yardoc from) and contains all of arguments you would otherwise pass
to the command-line tool. For instance, if you often type:

yardoc --no-private --protected app/**/*.rb - README LEGAL COPYING

You can place the following into your .yardopts:

--no-private --protected app/**/*.rb - README LEGAL COPYING

This way, you only need to type:

yardoc

Any extra switches passed to the command-line now will be appended to your
.yardopts options.

Note that options for yardoc are discussed in the {file:README.md README},
and a full overview of the .yardopts file can be found in {YARD::CLI::Yardoc}.

Documenting Extra Files

"Extra files" are extra guide style documents that help to give a brief overview
of how to use your library/framework, as well as any extra information that
might be vital for your users. The most common "extra file" is the README,
which is automatically detected by YARD if found in the root of your project
(any file starting with README*). You can specify extra files on the command
line (or in the .yardopts file) by listing them after the '-' separator:

yardoc lib/**/*.rb ext/**/*.c - LICENSE.txt

Note that the README will automatically be picked up, so you do not need to
specify it. If you don't want to modify the default file globs, you can ignore
the first set of arguments:

yardoc - LICENSE.txt

Below you can read about how to customize the look of these extra files, both
with markup and pretty titles.

Adding Meta-Data to Extra Files

You can add YARD-style @tag metadata to the top of any extra file if prefixed
by a # hash comment. YARD allows for arbitrary meta-data, but pays special
attention to the tags @markup, @encoding, and @title. Note that there
cannot be any whitespace before the tags. Here is an example of some tag data
in a README:

@markup markdown
@title The Best Library in the World!
@author The Author Name

This is the best library you will ever meet. Lipsum ...

The @markup tag allows you to specify a markup format to use for the file,
including "markdown", "textile", "rdoc", "ruby", "text", "html", or "none"
(no markup). This can be used when the markup cannot be auto-detected using
the extension of the filename, if the file has no extension, or if you want
to override the auto-detection.

By using @encoding you can specify a non-standard encoding. Note that
yardoc --charset sets the global encoding (for all comments / files),
so if you are using unicode across all your files, you can specify it there.
Using the @encoding tag might be used to override the default global
charset, say, if you had a localized README.jp file with SJIS data.
Also note that this only affects Ruby 1.9.x, as Ruby 1.8 is not properly
encoding aware.

The @title tag allows you to specify a full title name for the document.
By default, YARD uses the filename as the title of the document and lists
it in the file list in the index and file menu. In some cases, the file name
might not be descriptive enough, so YARD allows you to specify a full title:

contents of TITLE.txt:
@title The Title of The Document

Currently all other meta-data is hidden from view, though accessible
programmatically using the {YARD::CodeObjects::ExtraFileObject} class.

You can wrap the meta data section in an HTML comment to prevent it
from being displayed in rendered markdown on GitHub:

<!--
@markup markdown
@title The Best Library in the World!
@author The Author Name
-->

This is the best library you will ever meet. Lipsum ...

[bookmark: config]

Configuring YARD

YARD (0.6.2+) supports a global configuration file stored in ~/.yard/config.
This file is stored as a YAML file and can contain arbitrary keys and values
that can be used by YARD at run-time. YARD defines specific keys that are used
to control various features, and they are listed in {YARD::Config::DEFAULT_CONFIG_OPTIONS}.
A sample configuration file might look like:

:load_plugins: false
:ignored_plugins:
 - my_plugin
 - my_other_plugin
:autoload_plugins:
 - my_autoload_plugin
:safe_mode: false

You can also view and edit these configuration options from the commandline
using the yard config command. To list your configuration, use yard config --list.
To view a key, use yard config ITEM, and to set it, use yard config ITEM VALUE.

[bookmark: extending]

Extending YARD

There are many ways to extend YARD to support non-standard Ruby syntax (DSLs),
add new meta-data tags or programmatically access the intermediate metadata
and documentation from code. An overview of YARD's full architecture can be
found in the {file:docs/Overview.md} document.

For information on adding support for Ruby DSLs, see the {file:docs/Handlers.md}
and {file:docs/Parser.md} architecture documents.

For information on adding extra tags, see {file:docs/Tags.md}.

For information on accessing the data YARD stores about your documentation,
look at the {file:docs/CodeObjects.md} architecture document.

[bookmark: templating]

Templating YARD

In many cases you may want to change the style of YARD's templates or add extra
information after extending it. The {file:docs/Templates.md} architecture
document covers the basics of how YARD's templating system works.

[bookmark: plugins]

Plugin Support

YARD will allow any RubyGem installed on your system (or in your Gemfile)
to be loaded as a plugin provided it has a name with the prefix of
yard- or yard_. In order to load a plugin, use the --plugin
switch with the short-name (name minus the yard- prefix) or full-name
of the gem:

$ gem install yard-custom-plugin
...
$ yard doc --plugin custom-plugin
or
$ yard doc --plugin yard-custom-plugin

Note: you can also put this switch in your .yardopts file. See the
.yardopts section above for more information.

You can use this functionality to load a custom plugin that
extend YARD's functionality. A good example of this
is the yard-rspec [http://github.com/lsegal/yard-spec-plugin] plugin, which adds RSpec [http://rspec.info] specifications
to your documentation (yardoc and yri). You can try it out by installing
the gem or cloning the project and trying the example:

$ gem install yard-rspec

You can then load the plugin with:

$ yard doc --plugin rspec

YARD also provides a way to temporarily disable plugins on a per-user basis.
To disable a plugin create the file ~/.yard/ignored_plugins with a list
of plugin names separated by newlines. Note that the .yard directory might
not exist, so you may need to create it.

You may find some useful YARD plugins on RubyGems [https://rubygems.org/search?utf8=%E2%9C%93&query=name%3A+yard] or with
a Google advanced query [https://www.google.com/search?q=site%3Arubygems.org+intitle%3A%22yard-%22+OR+intitle%3A%22yard_%22].

@title Handlers Architecture

Handlers Architecture

Handlers allow the processing of parsed source code. Handling is done after
parsing to abstract away the implementation details of lexical and semantic
analysis on source and to only deal with the logic regarding recognizing
source statements as {file:docs/CodeObjects.md code objects}.

[image: Handlers Architecture Class Diagram]

The Pipeline

After the {file:docs/Parser.md parser component} finishes analyzing the
source, it is handed off for post-processing to the {YARD::Handlers::Processor}
class, which is responsible for traversing the set of statements given by
the parser and delegating them to matching handlers. Handlers match when the
{YARD::Handlers::Base.handles?} method returns true for a given statement.
The handler can then perform any action after being invoked by the process
method.

The Processor Class

The main purpose of the processor, as mentioned above, is to traverse through
the list of statements given to it by the parser. The processor also keeps
state about what is being processed. For instance, the processor is what keeps
track of the current namespace (the module or class an object is being defined
in), scope (class or instance), file and owner. The owner refers to the object
that is most directly responsible for the source statement being processed. This
is most often the same as the namespace, except when parsing the body of a method,
where the namespace would be the class/module the method is defined in and the
owner would be the method object itself.

Implementing a Handler

This section covers the basics of implementing a new-style Ruby handler. For
details on implementing a legacy handler, see the "API Differences" section below.

a Ruby handler can be implemented simply by subclassing the {YARD::Handlers::Ruby::Base}
class and declaring what node types or source to process with the {YARD::Handlers::Base.handles handles}
class method. A very simple handler that handles a module definition would be:

class MyModuleHandler < YARD::Handlers::Ruby::Base
 handles :module

 def process
 puts "Handling a module named #{statement[0].source}"
 end
end

For details on what nodes are, and what node types are, see the
{file:docs/Parser.md parser architecture document}.

In this case the node type being handled is the :module type. More than one
node type or handles declarations may describe a single handler, for instance,
a handler that handles class definitions should handle the :class and :sclass
node types respectively (the latter refers to classes defined as class << Something).
The {YARD::Handlers::Base#statement statement} attribute refers to the current
node (or statement) that is being handled by the handler.

Handling a Method Call

In some cases, a developer might need to handle a method call. The parser can
express a method call in many AST forms, so to simplify this process, a method
call can be handled by declaring the following in a handles statement:

class MyHandler < YARD::Handlers::Ruby::Base
 handles method_call(:describe)

 def process
 # Process the method call
 end
end

In this case we handle any of the method calls to method name describe with
the following syntaxes:

describe(something)
describe arg1, arg2, arg3
describe(something) { perform_a_block }
describe "Something" do
 a_block
end

Creating a new Code Object

Usually (but not always) handling is performed to create new code objects to add
to the registry (for information about code objects, see {file:docs/CodeObjects.md this document}).
Code objects should simply be created and added to the existing namespace. This
will be enough to add them to the registry. There is also a convenience
{YARD::Handlers::Base#register register} method which quickly sets standard attributed
on the newly created object, such as the file, line, source and docstring of the
object. This method will be seen in the next example.

Handling an Inner Block

By default, the parser gives the processor class a list of all the top level
statements and the processor parses only those top level statements. If an inner
block of a module, class, method declaration or even a block passed to a method call
needs to be handled, the {YARD::Handlers::Base#parse_block parse_block} method must be called on the list of statements
to parse. This will send the list to the processor to continue processing on that
statement list. The source tree can be selectively parsed in this manner by parsing
only the inner blocks that are relevant to documentation.

For example, the module handler parses the inner body of a module by performing
the following commands:

class YARD::Handlers::Ruby::ModuleHandler < YARD::Handlers::Ruby::Base
 handles :module

 def process
 modname = statement[0].source
 mod = register ModuleObject.new(namespace, modname)
 parse_block(statement[1], :namespace => mod)
 end
end

In this case statement[1] refers to a list of extra statements, the block we
wish to parse. Note here that when parsing objects like modules and classes,
we set the namespace for the duration of the block parsing by setting options
on the parse_block method.

API Differences for Legacy Handler

Because the legacy handler uses the legacy parser and therefore a different kind
of AST, there are subtle differences in the handler API. Most importantly, the
handles method usually deals with either lexical tokens or source code as a string
or RegExp object. The statement object, similarly, is made up of lexical tokens instead
of semantically parsed nodes (this is described in the {file:docs/Parser.md parser document}).

The module example above can be rewritten as a legacy handler as follows:

class YARD::Handlers::Ruby::Legacy::ModuleHandler < YARD::Handlers::Ruby::Legacy::Base
 handles TkMODULE

 def process
 modname = statement.tokens.to_s[/^module\s+(#{NAMESPACEMATCH})/, 1]
 mod = register ModuleObject.new(namespace, modname)
 parse_block(:namespace => mod)
 end
end

A few notes on the differences:

	We inherit from Legacy::Base instead of the standard Ruby Base handler class.

	We exchange node type :module for TkMODULE, which represents the
first token in the statement.

	We perform direct string manipulation to get the module name.

	parse_block does not take a list of statements. In the old parser API,
each statement has a block attribute which defines the list of
statements within that statement, if any. Therefore, parse_block will
always parse the statement.block if it exists.

@title Architecture Overview

Architecture Overview

YARD is separated in three major components, each of which allows YARD to be
extended for a separate purpose. The split also emphasizes YARD's design choice
to explicitly separate data gathering from HTML document generation, something
that tools like RDoc do not do. These components are:

	Code Parsing & Processing Component

	Data Storage Component

	Post Processing & Templating System

This separation is a major goal of the project, and means that YARD is not just
a tool to generate HTML output. The expectation is that any subset of YARD's
major components may be used, extended or modified independently. YARD may be
used just as a data gathering tool (to parse and audit code), just as a data
source (a webserver containing raw unformatted data about code), or just as a
conventional HTML documentation generation tool (like RDoc).

The important classes and dependencies of these components are shown in the
following class diagram:

[image: Overview Class Diagram]

[bookmark: parsing]

Code Parsing & Processing Component

This component is made up of four sub-components, each of which have separate
tasks during the data gathering process (note: the tag architecture is not
shown in the class diagram). These sub-components are:

	{file:docs/Parser.md}

	{file:docs/Handlers.md}

	{file:docs/CodeObjects.md}

	{file:docs/Tags.md}

The parser component reads source files and converts it into a set of statements
which the handlers then process, creating code objects which in turn create tags
(meta-data) attached to the objects. These objects are all added to the {YARD::Registry},
the data store component.

[bookmark: storage]

Data Storage Component

This component is currently implemented as a simple Ruby marshalled flat namespace
of object. The implementation is found in the single class {YARD::Registry}, which
is the centralized repository for all data being parsed, stored and accessed. There
are future plans to improve this storage mechanism to be backend agnostic and allow
for more robust storage.

[bookmark: templates]

Post Processing & Templating System

This component handles processing of objects from the registry through a templating
engine that allows output to a variety of formats. Practically speaking, this is
where templates can be implemented to change the design, output or structure of
the data. See {file:docs/Templates.md Templates Architecture} for a complete overview.

@title Parser Architecture

Parser Architecture

The parser component of YARD is the first component in the data processing pipeline
that runs before any handling is done on the source. The parser is meant to translate
the source into a set of statements that can be understood by the {file:docs/Handlers.md Handlers}
that run immediately afterwards.

The important classes are described in the class diagram of the entire parser
system below:

[image: Parser Class Diagram]

(Note: the RubyToken classes are omitted from the diagram)

SourceParser

The main class {YARD::Parser::SourceParser} acts as a factory class, instantiating
the correct parser class, an implementation of {YARD::Parser::Base}. The selected parser
is chosen based on either the file extension or by selecting it explicitly (as an argument
to parsing methods). YARD supports Ruby and C source files, but custom parsers can
be implemented and registered for various other languages by subclassing Parser::Base
and registering the parser with {YARD::Parser::SourceParser.register_parser_type}.

This factory class should always be used when parsing source files rather than
the individual parser classes since it initiates the pipeline that runs the
handlers on the parsed source. The parser used must also match the handlers,
and this is coordinated by the SourceParser class as well.

Using the SourceParser Class

The SourceParser class API is optimized for parsing globs of files. As such,
the main method to use the class is the parse class method, which takes an
array of file globs or a single file glob.

YARD::Parser::SourceParser.parse('spec_*.rb')
YARD::Parser::SourceParser.parse(['spec_*.rb', '*_helper.rb'])

This is equivalent to the convenience method {YARD.parse}:

YARD.parse('lib/**/*.rb')

In some cases (ie. for testing), it may be more helpful to parse a string of input
directly. In such a case, the method {YARD::Parser::SourceParser.parse_string} should be
used:

YARD::Parser::SourceParser.parse_string("def method(a, b) end")

You can also provide the parser type explicitly as the second argument:

Parses a string of C
YARD::Parser::SourceParser.parse_string("int main() { }", :c)

Note that these two methods are aliased as {YARD.parse} and {YARD.parse_string} for
convenience.

Implementing and Registering a Custom Parser

To implement a custom parser, subclass {YARD::Parser::Base}. Documentation on which
abstract methods should be implemented are documented in that class. After the class
is implemented, it is registered with the {YARD::Parser::SourceParser} factory class
to be called when a file of the right extension needs to be parsed, or when a user
selects that parser type explicitly. To register your new parser class, call the
method {YARD::Parser::SourceParser.register_parser_type}:

SourceParser.register_parser_type(:my_parser, MyParser, 'my_parser_ext')

The last argument can be a single extension, a list of extensions (Array), a single Regexp, or a
list of Regexps. Do not include the '.' in the extension.

The Two Ruby Parser Types

When parsing Ruby, the SourceParser can either instantiate the new {YARD::Parser::Ruby::RubyParser}
class or the {YARD::Parser::Ruby::Legacy::StatementList} class. The first of the
two, although faster, more robust and more efficient, is only available for
Ruby 1.9. The legacy parser parser is available in both 1.8.x and 1.9, if
compatibility is required. The choice of parser will affect which handlers
ultimately get used, since new handlers can only use the new parser and the
same requirement applies to the legacy parser & handlers.

Switching to Legacy Parser

By default, running YARD under Ruby 1.9 will automatically select the new parser
and new handlers by extension. Although YARD supports both handler styles, plugins
may choose to only implement one of the two (though this is not recommended). If
only the legacy handlers are implemented, the SourceParser class should force
the use of the legacy parser by setting the parser_type attribute as such:

YARD::Parser::SourceParser.parser_type = :ruby18

The default value is :ruby. Note that this cannot be forced the other way around,
a parser type of :ruby cannot be set under Ruby 1.8.x as the new parser is not
supported under 1.8.

RubyParser (the New Parser)

The new Ruby parser uses the Ripper library that is packaged as part of stdlib
in Ruby 1.9. Because of this, it can generate an AST from a string of Ruby input
that is similar to the style of other sexp libraries (such as ParseTree). Each
node generated in the tree is of the base type {YARD::Parser::Ruby::AstNode},
which has some subclasses for common node types.

AstNode Basics

The AstNode class behaves like a standard Array class in which all of its data
make up the list of elements in the array. Unlike other sexp style libraries, however,
the node type is not the first element of the list. Instead, the node type is defined
by the #type method. The following examples show some of the basic uses of AstNode:

The sexp defines the statement `hello if 1`
node = s(:if_mod, s(:int, "1"), s(:var_ref, s(:ident, "hello")))
node.type #=> :if_mod
node[0] #=> s(:int, "1")
node[0][0] #=> "1"

(Note the s() syntax is shorthand for AstNode.new(...). s() with no type
is shorthand for a node of type :list)

As shown, not all of the elements are AstNodes in themselves, some are String
objects containing values. A list of only the AstNodes within a node can be
accessed via the {YARD::Parser::Ruby::AstNode#children #children} method. Using
the sexp declared above, we can do:

node.children #=> [s(:int, "1"), s(:var_ref, s(:ident, "hello"))]

AstNode#source and #line

Every node defines the #source method which returns the source code that the
node represents. One of the most common things to do with a node is to grab its
source. The following example shows how this can be done:

source = "if 1 == 1 then\n raise Exception\n end"
ast = YARD::Parser::Ruby::RubyParser.parse(source).root
ast[0].condition.source #=> "1 == 1"
ast[0].then_block.source #=> "raise Exception"

Note that this only works on source parsed from the RubyParser, not sexps
declared using the s() syntax. This is because no source code is generated
or stored by nodes. Instead, only the character ranges are stored, which are
then looked up in the original full source string object. For example:

Following the code snippet above
ast[0].then_block.source_range #=> 17..31

We can also get the line and line ranges in a similar fashion:

ast[0].type #=> :if
ast[0].line #=> 1
ast[0].line_range #=> 1..3 (note the newlines in the source)

AstNode#jump

Often the AST will be such that the node we care about might be buried arbitrarily
deep in a node's hierarchy. The {YARD::Parser::Ruby::AstNode#jump} method exists
to quickly get at a node of a specific type in such a situation:

Get the first identifier in the statement
ast = s(s(:int, "1"), s(s(:var_ref, s(:ident, "hello"))))
ast.jump(:ident)[0] #=> "hello"

Multiple types can be searched for at once. If none are found, the original root
node is returned so that it may be chained.

The Legacy Parser

The goal of the legacy parser is much the same as the new parser, but it is far
more simplistic. Instead of a full-blown AST, the legacy parser simply groups
together lists of "statements" called a {YARD::Parser::Ruby::Legacy::StatementList}.
These statement lists are made up of {YARD::Parser::Ruby::Legacy::Statement} objects.
A statement is any method call condition, loop, or declaration. Each statement
may or may not have a block. In the case of a condition or loop, the block is
the inner list of statements; in the case of a method call, the block is a do
block (if provided). The statements themselves are made up of tokens, so instead
of being semantic in nature like the new parser, statements are tied directly
to the lexical tokens that make them up. To convert a statement into source, you
simply join all the tokens together (this is done through the use of #to_s).

Note that because there is little semantic parsing, the legacy parser is less
able to deal with certain Ruby syntaxes. Specifically, the :if_mod syntax
seen above ("hello if 1") would be considered two statements with the new parser,
but using the legacy parser it is only one statement:

stmts = ARD::Parser::Ruby::Legacy::StatementList.new("hello if 1")
stmts[0].block #=> nil
stmts[0].tokens.to_s #=> "hello if 1"

In addition, this means that most handling still needs to be done via string
manipulation and regular expression matching, making it considerably more
difficult to use in edge case scenarios.

@title Tags Overview

Tags Overview

Tags represent meta-data as well as behavioural data that can be added to
documentation through the @tag style syntax. As mentioned, there are two
basic types of tags in YARD, "meta-data tags" and "behavioural tags", the
latter is more often known as "directives". These two tag types can be
visually identified by their prefix. Meta-data tags have a @ prefix,
while directives have a prefix of @! to indicate that the directive
performs some potentially mutable action on or with the docstring. The
two tag types would be used in the following way, respectively:

@meta_data_tag some data
@!directive_tag some data
class Foo; end

This document describes how tags can be specified, how they affect your
documentation, and how to use specific built-in tags in YARD, as well
as how to define custom tags.

Meta-Data Tags

Meta-data tags are useful to add arbitrary meta-data about a documented
object. These tags simply add data to objects that can be looked up later,
either programmatically, or displayed in templates. The benefit to describing
objects using meta-data tags is that your documentation can be organized
semantically. Rather than having a huge listing of text with no distinction
of what each paragraph is discussing, tags allow you to focus in on specific
elements of your documentation.

For example, describing parameters of a method can often be important to your
documentation, but should not be mixed up with the documentation that describes
what the method itself does. In this case, separating the parameter documentation
into {tag:param} tags can yield much better organized documentation, both in
source and in your output, without having to manually format the data using
standard markup.

All of this meta-data can be easily parsed by tools and used both in your templates
as well as in code checker tools. An example of how you can leverage tags
programmatically is shown in the {tag:todo} tag, which lists a small snippet of
Ruby code that can list all of your TODO items, if they are properly tagged.

Custom meta-data tags can be added either programmatically or via the YARD
command-line. This is discussed in the "Adding Custom Tags"
section.

A list of built-in meta-data tags are found below in the Tag List.

Directives

Directives are similar to meta-data tags in the way they are specified, but they
do not add meta-data to the object directly. Instead, they affect the parsing
context and objects themselves, allowing a developer to create objects
(like methods) outright, rather than simply add text to an existing object.
Directives have a @! prefix to differentiate these tags from meta-data tags,
as well as to indicate that the tag may modify or create new objects when
it is called.

A list of built-in directives are found below in the Directive List.

Tag Syntax

Tags begin with the @ or @! prefix at the start of a comment line, followed
immediately by the tag name, and then optional tag data (if the tag requires it).
Unless otherwise specified by documentation for the tag, all "description" text
is considered free-form data and can include any arbitrary textual data.

Multi-line Tags

Tags can span multiple lines if the subsequent lines are indented by more than
one space. The typical convention is to indent subsequent lines by 2 spaces.
In the following example, @tagname will have the text "This is indented tag data":

@tagname This is
indented tag data
but this is not

For most tags, newlines and indented data are not significant and do not impact
the result of the tag. In other words, you can decide to span a tag onto multiple
lines at any point by creating an indented block. However, some tags like
{tag:example}, {tag:overload}, {tag:!macro}, {tag:!method}, and {tag:!attribute}
rely on the first line for special information about the tag, and you cannot
split this first line up. For instance, the {tag:example} tag uses the first line
to indicate the example's title.

Common Tag Syntaxes

Although custom tags can be parsed in any way, the built-in tags follow a few
common syntax structures by convention in order to simplify the syntax. The
following syntaxes are available:

	Freeform data —

 In this case, any amount of textual data is allowed,
including no data. In some cases, no data is necessary for the tag.

	Freeform data with a types specifier list —

 Mostly freeform data
beginning with an optional types specifier list surrounded in [brackets].
Note that for extensibility, other bracket types are allowed, such as <>,
() and {}. The contents of the list are discussed in detail below.

	Freeform data with a name and types specifier list —

 freeform
data beginning with an optional types list, as well as a name key, placed
either before or after the types list. The name key is required. Note that
for extensibility, the name can be placed before the types list, like:
name [Types] description. In this case, a separating space is not required
between the name and types, and you can still use any of the other brackets
that the type specifier list allows.

	Freeform data with title —

 freeform data where the first line cannot
be split into multiple lines. The first line must also always refer to the
"title" portion, and therefore, if there is no title, the first line must
be blank. The "title" might occasionally be listed by another name in tag
documentation, however, you can identify this syntax by the existence of
a multi-line signature with "Indented block" on the second line.

In the tag list below, the term "description" implies freeform data, [Types]
implies a types specifier list, "name" implies a name key, and "title" implies
the first line is a newline significant field that cannot be split into multiple
lines.

Types Specifier List

In some cases, a tag will allow for a "types specifier list"; this will be evident
from the use of the [Types] syntax in the tag signature. A types specifier list
is a comma separated list of types, most often classes or modules, but occasionally
literals. For example, the following {tag:return} tag lists a set of types returned
by a method:

Finds an object or list of objects in the db using a query
@return [String, Array<String>, nil] the object or objects to
find in the database. Can be nil.
def find(query) finder_code_here end

A list of conventions for type names is specified below. Typically, however,
any Ruby literal or class/module is allowed here. Duck-types (method names
prefixed with "#") are also allowed.

Note that the type specifier list is always an optional field and can be omitted
when present in a tag signature. This is the reason why it is surrounded by
brackets. It is also a freeform list, and can contain any list of values, though
a set of conventions for how to list types is described below.

Type List Conventions

 A list of examples of common type listings and what they translate into is
 available at http://yardoc.org/types.

Typically, a type list contains a list of classes or modules that are associated
with the tag. In some cases, however, certain special values are allowed or required
to be listed. This section discusses the syntax for specifying Ruby types inside of
type specifier lists, as well as the other non-Ruby types that are accepted by
convention in these lists.

It's important to realize that the conventions listed here may not always adequately
describe every type signature, and is not meant to be a complete syntax. This is
why the types specifier list is freeform and can contain any set of values. The
conventions defined here are only conventions, and if they do not work for your
type specifications, you can define your own appropriate conventions.

Note that a types specifier list might also be used for non-Type values. In this
case, the tag documentation will describe what values are allowed within the
type specifier list.

Class or Module Types

Any Ruby type is allowed as a class or module type. Such a type is simply the name
of the class or module.

Note that one extra type that is accepted by convention is the Boolean type,
which represents both the TrueClass and FalseClass types. This type does not
exist in Ruby, however.

Parametrized Types

In addition to basic types (like String or Array), YARD conventions allow for
a "generics" like syntax to specify container objects or other parametrized types.
The syntax is Type<SubType, OtherSubType, ...>. For instance, an Array might
contain only String objects, in which case the type specification would be
Array<String>. Multiple parametrized types can be listed, separated by commas.

Note that parametrized types are typically not order-dependent, in other words,
a list of parametrized types can occur in any order inside of a type. An array
specified as Array<String, Fixnum> can contain any amount of Strings or Fixnums,
in any order. When the order matters, use "order-dependent lists", described below.

Duck-Types

Duck-types are allowed in type specifier lists, and are identified by method
names beginning with the "#" prefix. Typically, duck-types are recommended
for {tag:param} tags only, though they can be used in other tags if needed.
The following example shows a method that takes a parameter of any type
that responds to the "read" method:

Reads from any I/O object.
@param io [#read] the input object to read from
def read(io) io.read end

Hashes

Hashes can be specified either via the parametrized type discussed above,
in the form Hash<KeyType, ValueType>, or using the hash specific syntax:
Hash{KeyTypes=>ValueTypes}. In the latter case, KeyTypes or ValueTypes can
also be a list of types separated by commas.

Order-Dependent Lists

An order dependent list is a set of types surrounded by "()" and separated by
commas. This list must contain exactly those types in exactly the order specified.
For instance, an Array containing a String, Fixnum and Hash in that order (and
having exactly those 3 elements) would be listed as: Array<(String, Fixnum, Hash)>.

Literals

Some literals are accepted by virtue of being Ruby literals, but also by YARD
conventions. Here is a non-exhaustive list of certain accepted literal values:

	true, false, nil —

 used when a method returns these explicit literal
values. Note that if your method returns both true or false, you should use
the Boolean conventional type instead.

	self —

 has the same meaning as Ruby's "self" keyword in the context of
parameters or return types. Recommended mostly for {tag:return} tags that are
chainable.

	void —

 indicates that the type for this tag is explicitly undefined.
Mostly used to specify {tag:return} tags that do not care about their return
value. Using a void return tag is recommended over no type, because it makes
the documentation more explicit about what the user should expect. YARD will
also add a note for the user if they have undefined return types, making things
clear that they should not use the return value of such a method.

[bookmark: reftags]

Reference Tags

 Reference tag syntax applies only to meta-data tags, not directives.

If a tag's data begins with (see OBJECT) it is considered a "reference tag".
A reference tag literally copies the tag data by the given tag name from the
specified OBJECT. For instance, a method may copy all {tag:param} tags from
a given object using the reference tag syntax:

@param user [String] the username for the operation
@param host [String] the host that this user is associated with
@param time [Time] the time that this operation took place
def clean(user, host, time = Time.now) end

@param (see #clean)
def activate(user, host, time = Time.now) end

Adding Custom Tags

If a tag is specific to a given project, consider namespacing
 it by naming it in the form projectname.tagname, ie.,
 yard.tag_signature.
Custom tags can be added to YARD either via the command-line or programmatically.
The programmatic method is not discussed in this document, but rather in the
{file:docs/TagsArch.md} document.

To add a custom tag via the command-line or .yardopts file, you can use the
--*-tag options. A few different options are available for the common tag
syntaxes described above. For example, to add a basic freeform tag, use:

!!!sh
$ yard doc --tag rest_url:"REST URL"

This will register the @rest_url tag for use in your documentation and display
this tag in HTML output wherever it is used with the heading "REST URL".
Note that the tag title should follow the tag name with a colon (:). Other
tag syntaxes exist, such as the type specifier list freeform tag
(--type-tag), or a named key tag with types (--type-name-tag).

If you want to create a tag but not display it in output (it is only for
programmatic use), add --hide-tag tagname after the definition:

!!!sh
$ yard doc --tag complexity:"McCabe Complexity" --hide-tag complexity

Note that you might not need a tag title if you are hiding it. The title
part can be omitted.

{yard:include_tags}

@title Tags Architecture

Tags Architecture

Programmatic API

Accessing Tag Information

Tag metadata is added when a {YARD::Docstring} is added to a {file:docs/CodeObjects.md code object}
using the {YARD::CodeObjects::Base#docstring=} attribute. In addition to adding
conventional comments, tags are parsed and associated with the object. The easiest
way to access tags on an object is to use the {YARD::CodeObjects::Base#tag} and #tags
methods, for example:

Using the Foo class object from above
obj.tags(:tagname).first.text #=> "some data"

Because multiple tags can be stored with the same name, they are stored as a list
of tags. The #tag method is an alias for the first item in the list of tags.
Also note that the #tag, #tags and #has_tag? methods are all convenience
methods that delegate to the {YARD::Docstring} object described above.

Adding Custom Tags

The @tagname tag used in the above examples is clearly not part of the tags
that come with YARD. If such a tag would actually be part of documentation under
a default install, YARD would raise a warning that the tag does not exist. It is,
however, trivial to add this tag to be recognized by YARD.

All tags in YARD are added to the {YARD::Tags::Library tag library} which makes
use of a tag factory class to parse the data inside the tags. To simply add a
tag that stores simple text like our @tagname tag above, use:

YARD::Tags::Library.define_tag("A Sample Tag", :tagname)

This will now allow YARD to add the metadata from @tagname to the docstring.

Tag Factory Architecture

Recognizing a tag is one part of the process. Parsing the tag contents is the
second step. YARD has a tag architecture that allows developers to add or completely
change the way tags contents can be parsed.

The separation of registration and tag creation can be seen in the following
class diagram:

[image: Tags Architecture Class Diagram]

DefaultFactory

By default, YARD has a few standard syntaxes that can be parsed for tags. These
are all implemented by the {YARD::Tags::DefaultFactory} class. These syntaxes
are:

	Standard text: no parsing is done, but text is stripped of newlines and
multiple spaces.

	Raw text: does no parsing at all, no stripping of newlines or spaces. This
is best used for code snippets.

	Raw text with title: does no parsing on the text but extracts the first line
of the metadata as the "title", useful for tags such as @example:

@example Inspect an element
myobj.inspect #=> #<Object:0x123525>

	Text with types: parses a list of types at the beginning of the text. Types
are optional. The standard syntax is in the form [type1, type2, ...],
for example:

@return [String, Symbol] a description here
@return description here with no types

	Text with types and a name: parses a list of types at the beginning of text
followed by a name and extra descriptive text. For example:

@param [String] str the string to reverse
def reverse(str) '...' end

As mentioned above, this syntax is implemented by the DefaultFactory which can
be swapped out for any factory. In some cases, a developer may want to change
the type declaration syntax to be in the form:

@tagname name <Types, here> description

This can be done by simply implementing a new factory that parses the data in
this form.

Implementing a Factory

Factories should implement the method parse_tag as well as any parse_tag_SUFFIX
method where SUFFIX refers to the suffix added when declaring the tag. For example,
a tag can also be declared as follows:

YARD::Tags::Library.define_tag "Parameter", :param, :with_types

In such a case, the factory will be called with method parse_tag_with_types. In
all cases, the method should return a new {YARD::Tags::Tag} object. Generally,
the parse_tag methods take 2 or 3 parameters. A simple tag can be implemented
as:

def parse_tag(tag_name, text)
 Tag.new(tag_name, text)
end

The text parameter contains pre-parsed text with extra spaces and newlines removed.
If required, the method could also be declared with a third parameter containing
unmodified raw text:

def parse_tag_with_raw_text(tag_name, text, raw_text)
 Tag.new(tag_name, raw_text)
end

Note that this method would be invoked for a tag declared with the :with_raw_text
suffix.

Changing the Factory

To change the factory, set the {YARD::Tags::Library.default_factory} attribute:

YARD::Tags::Library.default_factory = MyFactory

This must be done before any parsing is done, or the factory will not be used.

@title Templates Architecture

Templates Architecture

Templates are the main component in the output rendering process of YARD,
which is invoked when conventional HTML/text output needs to be rendered
for a set of code objects.

Design Goals

The general design attempts to be as abstracted from actual content and templates
as possible. Unlike RDoc which uses one file to describe the entire template,
YARD splits up the rendering of code objects into small components, allowing
template modification for smaller subsets of a full template without having to
duplicate the entire template itself. This is necessary because of YARD's support
for plugins. YARD is designed for extensibility by external plugins, and because
of this, no one plugin can be responsible for the entire template because no
one plugin knows about the other plugins being used. For instance, if an RSpec
plugin was added to support and document specifications in class templates,
this information would need to be transparently added to the template to work
in conjunction with any other plugin that performed similar template modifications.
The design goals can be summarized as follows:

	Output should be able to be rendered for any arbitrary format with little
modification to YARD's source code. The addition of extra templates should
be sufficient.

	The output rendered for an object should independently rendered data
from arbitrary sources. These independent components are called "sections".

	Sections should be able to be inserted into any object without affecting
any existing sections in the document. This allows for easy modification
of templates by plugins.

Templates

Template modules are the objects used to orchestrate the design goals listed
above. Specifically, they organize the sections and render the template contents
depending on the format.

Engine

The Engine class orchestrates the creation and rendering of Template modules and
handles serialization or specific rendering scenarios (like HTML). To create
a template, use the {YARD::Templates::Engine.template template} method. The two most
common methods used to initiate output are the {YARD::Templates::Engine.render render}
and {YARD::Templates::Engine.generate generate} methods which generate and
optionally serialize output to a file. The latter, #generate, is used
specially to generate HTML documentation and copy over assets that may be
needed. For instance, an object may be rendered with:

YARD::Templates::Engine.render(:object => myobject)

A set of objects may be rendered into HTML documentation by using:

all_objects is an array of module and class objects
options includes a :serializer key to copy output to the file system
YARD::Templates::Engine.generate(all_objects, options)

Note that these methods should not be called directly. The {YARD::CodeObjects::Base}
class has a {YARD::CodeObjects::Base#format #format} helper method to render an
object. For instance, the above render example is equivalent to the simple
call myobject.format. The generate method is a special kind of render
and is called from the {YARD::CLI::Yardoc} command line utility.

Template Options

A template keeps state when it is rendering output. This state is kept in
an options hash which is initially passed to it during instantiation. Some
default options set the template style (:template), the output format (:format),
and the serializer to use (:serializer). This options hash is modifiable
from all methods seen above. For example, initializing a template to output as
HTML instead of text can be done as follows:

myobject.format(:format => :html)

Serializer

This class abstracts the logic involved in deciding how to serialize data to
the expected endpoint. For instance, there is both a {YARD::Serializers::StdoutSerializer StdoutSerializer}
and {YARD::Serializers::FileSystemSerializer FileSystemSerializer} class for
outputting to console or to a file respectively. When endpoints with locations
are used (like files or URLs), the serializer implements the {YARD::Serializers::Base#serialized_path #serialized_path}
method. This allows the translation from a code object to its path at the endpoint,
which enables inter-document linking.

Rendered objects are automatically serialized using the object if present,
otherwise the rendered object is returned as a string to its parent. Nested
Templates automatically set the serializer to nil so that they return
as a String to their parent.

Creating a Template

Templates are represented by a directory inside the {YARD::Templates::Engine.template_paths}
on disk. A standard template directory looks like the following tree:

(Assuming templates/ is a template path)
templates
`-- default
 |-- class
 | |-- dot
 | | |-- setup.rb
 | | `-- superklass.erb
 | |-- html
 | | |-- constructor_details.erb
 | | |-- setup.rb
 | | `-- subclasses.erb
 | |-- setup.rb
 | `-- text
 | |-- setup.rb
 | `-- subclasses.erb
 |-- docstring
 | |-- html
 | | |-- abstract.erb
 | | |-- deprecated.erb
 | | |-- index.erb
 | | `-- text.erb
 | |-- setup.rb
 | `-- text
 | |-- abstract.erb
 | |-- deprecated.erb
 | |-- index.erb
 | `-- text.erb

The path default refers to the template style (:template key in options hash)
and the directories at the next level (such as class) refer to template
:type (options hash key) for a template. The next directory refers to the
output format being used defined by the :format template option.

As we saw in the above example, the format option can be set to :html, which
would use the html/ directory instead of text/. Finally, the individual .erb
files are the sections that make up the template.

Note that the subdirectory html/ is also its own "template" that inherits
from the parent directory. We will see more on this later.

setup.rb

Every template should have at least one setup.rb file that defines the
{YARD::Templates::Template#init #init} method to set the
{YARD::Templates::Template#sections #sections} used by the template. If
a setup.rb is not defined in the template itself, there should be a template
that is inherited (via parent directory or explicitly) that sets the sections
on a newly created template.

A standard setup.rb file looks like:

def init
 sections :section1, :section2, :section3
end

Sections

Sections are smaller components that correlate to template
fragments. Practically speaking, a section can either be a template fragment
(a conventional .erb file or other supported templating language), a method
(which returns a String) or another {YARD::Templates::Template} (which in turn has its own
list of sections).

Nested Sections

Sections often require the ability to encapsulate a set of sub-sections in markup
(HTML, for instance). Rather than use heavier Template subclass objects, a more
lightweight solution is to nest a set of sub-sections as a list that follows
a section, for example:

def init
 sections :header, [:section_a, :section_b]
end

The above example nests section_a and section_b within the header section.
Practically speaking, these sections can be placed in the result by yielding
to them. A sample header.erb template might contain:

<h2>Header</h2>
<div id="contents">
 <%= yieldall %>
</div>

This template code would place the output of section_a and section_b within
the above div element. Using yieldall, we can also change the object that is being
rendered. For example, we may want to yield the first method of the class.
We can do this like so:

<h2>First method</h2>
<%= yieldall :object => object.meths.first %>

This would run the nested sections for the method object instead of the class.

Note that yieldall yields to all subsections, whereas yield will yield
to each individually (in order) until there are no more left to yield to.
In the vast majority of cases, you'd want to use yieldall, since yield
makes it hard for users to override your template.

Inheriting Templates

Parent directory templates are automatically inherited (or mixed in, to be
more accurate) by the current template. This means that the 'default/class/html'
template automatically inherits from 'default/class'. This also means that anything
defined in 'default/class/setup.rb' can be overridden by 'default/class/html/setup.rb'.

Since the Template module is a module, and not a class, they can be mixed in
explicitly (via include/extend) from other templates, which allows templates
to share erb files or helper logic. The 'default/class' template explicitly
mixes in the 'default/module' template, since it uses much of the same sections.
This is done with the helper {YARD::Templates::Template::ClassMethods#T T} method, which
is simply a shorthand for {YARD::Templates::Engine.template Engine.template}.
It can then override (using standard inheritance) the sections from the module
template and insert sections pertaining to classes. This is one of the design
goals described above.

For instance, the first line in default/class/html/setup.rb is:

include T('default/module/html')

This includes the 'default/module/html', which means it also includes 'default/module'
by extension. This allows class to make use of any of module's erb files.

Inserting and Traversing Sections

The ability to insert sections was mentioned above. The class template, for
instance, will modify the #init method to insert class specific sections:

def init
 super
 sections.place(:subclasses).before(:children)
 sections.delete(:children)
 sections.place([:constructor_details, [T('method_details')]]).before(:methodmissing)
end

Observe how sections has been modified after the super method was called (the
super method would have been defined in default/module/setup.rb). The
sections object is of the {YARD::Templates::Section} class and allows sections to be inserted
before or after another section using {Array#place} by it's given name rather
than index. This allows the overriding of templates in a way that does not
depend on where the section is located (since it may have been overridden by
another module).

You can also use sections[:name] to find the first child section named :name.
For instance, with the following sections declaration:

sections :a, [:b, :c, [:d]]

You can get to the :d section with:

sections[:a][:c][:d]

You can use this to insert a section inside a nested set without using indexed
access. The following command would result in [:a, [:b, :c, [:d, :e]]]:

sections[:a][:c].place(:e).after(:d)

There are also two methods, {Insertion#before_any} and {Insertion#after_any},
which allow you to insert sections before or after the first matching section name
recursively. The above example could simply be rewritten as:

sections.place(:e).after_any(:d)

Overriding Templates by Registering a Template Path

Inheriting templates explicitly is useful when creating a customized template
that wants to take advantage of code re-use. However, most users who want
to customize YARD templates will want to override existing behaviour without
creating a template from scratch.

YARD solves this problem by allowing other template paths to be registered.
Because template modules are represented by a relative path such as 'default/class',
they can be found within any of the registered template paths. A new template
path is registered as:

YARD::Templates::Engine.register_template_path '/path/to/mytemplates'

At this point, any time the 'default/class' template is loaded, the template
will first be looked for inside the newly registered template path. If found,
it will be used as the template module, with the modules from the other
template paths implicitly mixed in.

Therefore, by using the same directory structure as a builtin YARD template,
a user can customize or override individual templates as if the old ones were
inherited. A real world example would further modify the 'default/class' template
seen above by creating such a path in our '/path/to/mytemplates' custom template
path:

/path/to/mytemplates/:
|-- class
| |-- html
| | |-- customsection.erb
| |-- setup.rb

The setup.rb file would look like:

def init
 super
 sections.push :customsection
end

Now, when a class object is formatted as HTML, our customsection.erb will be
appended to the rendered data.

Overriding Stylesheets and Javascripts

Template authors can override existing stylesheets and javascripts by creating
a file with the same name as existing files within the fulldoc template. The
documentation output will utilize the new replacement file.

YARD's fulldoc template defines three stylesheets:

/yard/templates/default/:
|-- fulldoc
| |-- html
| | |-- css
| | | |-- common.css
| | | |-- full_list.css
| | | |-- style.css

The style.css is the primary stylesheet for the HTML output.

The full_list.css is an additional stylesheet loaded specifically for the
search field menus (i.e. class list, method list, and file list).

The common.css is an empty css file that an template author can easily override
to provide custom styles for their plugin. However, if a user installs multiple
plugins that utilize this same file to deliver styles, it is possible that they
will be overridden.

YARD's fulldoc template defines three javascript files:

/yard/templates/default/:
|-- fulldoc
| |-- html
| | |-- js
| | | |-- app.js
| | | |-- full_list.js
| | | |-- jquery.js

The app.js is the primary javascript file for the HTML output.

The full_list.js defines additional javascript loaded specifically for the
search field menus (i.e. class list, method list, and file list).

The jquery.js is copy of the jquery javascript library.

Adding a Custom Stylesheet or Javascript

To load additional stylesheets and javascripts with every page (except the search
field menus) generated from the base layout template:

	Define your own custom stylesheet and/or javascript file
(default/ is the default template name inside of the /template root directory):

/template/default/:
|-- fulldoc
| |-- html
| | |-- css
| | | |-- custom.css
| | |-- js
| | | |-- custom.js

	Create a setup.rb in the layout template directory and override the methods
stylesheets and javascripts. The path to the template would be:

/template/default/:
|-- layout
| |-- html
| | |-- setup.rb

And the code would look like:

def stylesheets
 # Load the existing stylesheets while appending the custom one
 super + %w(css/custom.css)
end

def javascripts
 # Load the existing javascripts while appending the custom one
 super + %w(js/custom.js)
end

To load additional stylesheets and javascripts for the search menus loaded from
the fulldoc template:

	Define your own custom stylesheet and/or javascript file.

/path/to/mytemplates/:
|-- fulldoc
| |-- html
| | |-- css
| | | |-- custom_full_menu.css
| | |-- js
| | | |-- custom_full_menu.js

	Override the methods stylesheets_full_list and javascripts_full_list
in the setup.rb file inside fulldoc/html.

def stylesheets_full_list
Load the existing stylesheets while appending the custom one
super + %w(css/custom.css)
end

def javascripts_full_list
Load the existing javascripts while appending the custom one
super + %w(js/custom.js)
end

Overriding Search Menus

By default YARD's fulldoc template generates three search fields:

	Class List

	Method List

	File List

Their contents are rendered in methods within the fulldoc template:

	generate_class_list

	generate_method_list

	generate_file_list

To override these lists you will need to:

	Create a setup.rb in the fulldoc template directory and override the
particular method.

/path/to/mytemplates/:
|-- fulldoc
| |-- html
| | |-- setup.rb

def generate_method_list
 @items = prune_method_listing(Registry.all(:method), false)
 @items = @items.reject {|m| m.name.to_s =~ /=$/ && m.is_attribute? }

 # Here we changed the functionality to reverse the order of displayed methods
 @items = @items.sort_by {|m| m.name.to_s }.reverse
 @list_title = "Method List"
 @list_type = "methods"
 asset('method_list.html', erb(:full_list))
end

Adding Additional Search Menus

By default YARD's fulldoc template generates three search fields:

	Class List

	Method List

	File List

These are defined in the layout template method menu_lists and pulled into
the fulldoc template through a similarly named method.

To load an additional menu item:

	Create a setup.rb in the layout template directory and override the methods
menu_lists. The type informs the search field the name of the file.
The title is the name that appears above the section when viewed in frames.
The search_title is the name that appears in the search field tab on the page.

 /path/to/mytemplates/:
 |-- layout
 | |-- html
 | | |-- setup.rb

 def menu_lists
 # Load the existing menus
 super + [{ :type => 'feature', :title => 'Features', :search_title => 'Feature List' }]
 end

	Create a setup.rb in the fulldoc template directory and create a method
to generate a menu for the specified type.
The method generate_assets will look for a function with a signature prefixed
with generate, the type value specified, and the suffix list. Within that
method you can configure and load the specific objects you wish to display.

/path/to/mytemplates/:
|-- fulldoc
| |-- html
| | |-- setup.rb

def generate_feature_list

 # load all the features from the Registry
 @items = Registry.all(:feature)
 @list_title = "Feature List"
 @list_type = "feature"

 # optional: the specified stylesheet class
 # when not specified it will default to the value of @list_type
 @list_class = "class"

 # Generate the full list html file with named feature_list.html
 # @note this file must be match the name of the type
 asset('feature_list.html', erb(:full_list))
end

@title What's New?

What's New in 0.8.x?

	Directives (new behavioural tag syntax) (0.8.0)

	Added --embed-mixin(s) to embed mixins into class docs (0.8.0)

	Internationalization (I18n) support for translating docs (0.8.0)

	New C parser / handlers architecture (0.8.0)

	YARD will now warn if @param name not in method params (0.8.0)

	Added support for module_function calls in Ruby code (0.8.0)

	Greatly improved tag documentation using custom template (0.8.0)

	Tags can now contain '.' for namespacing (0.8.0)

	Added "frames" links for non-framed pages for better nav (0.8.0)

	Added Gemfile support to YARD server for local gem sets (0.8.0)

	Server now displays README on index route like static docs (0.8.0)

	Added line numbers to yard stats --list-undoc --compact (0.8.0)

	Single object db now default (multi-object db unsupported) (0.8.0)

	Added --api tag to generate documentation for API sets (0.8.1)

	Added --non-transitive-tag to disable transitive tag (0.8.3)

	Added -B/--bind to bind to a port in yard server (0.8.4)

	Added asciidoc markup type support (0.8.6)

	Added yard markups command to list available markup types (0.8.6)

	Added yard display command to display formatted objects (0.8.6)

	Added --layout to yard display command (0.8.6.1)

	Added stats_options for the rake task (0.8.7.6)

Directives (new behavioural tag syntax) (0.8.0)

 The tags {tag:!macro}, {tag:!method}, {tag:!attribute}, {tag:!group},
 {tag:!endgroup}, {tag:!scope} and {tag:!visibility} have been changed
 from meta-data tags to directives. This means they should now be called
 with the "@!" prefix instead of "@". Note however that for
 backward compatibility, the old "@macro", "@method", etc.,
 syntax for all of these tags will still work and is supported.

 Some backwards incompatible changes were made to {tag:!macro} syntax.
 Please read this section carefully if you are using this tag.

YARD 0.8.0 adds a new tag syntax called "directives" using the @!
prefix. These directive tags can be used to modify parser state while
processing objects, or even create new objects on the fly. A plugin
API is available similar to tags, and directives should be registered
in the {YARD::Tags::Library} class using {YARD::Tags::Library.define_directive}.

To use a directive, simply call it the same way as any tag. Tag syntax
is documented in {file:docs/Tags.md}.

Notable features of directives

Directives do not need to be attached to object docstrings

Unlike meta-data tags which apply to created objects, directives
do not need to be attached to an object in order to be used. This
means you can have free-standing comments with directives, such as:

@macro mymacro
A new macro, not attached to any docstring

...other Ruby code here...

Using the macro:
@macro mymacro
def mymethod; end

You can do the same to define methods and attributes, as discussed
below.

@!method and @!attribute directives improved

The method and attribute directives can now be used to create multiple
objects in a single docstring. Previously a @method or @attribute
tag would only create one method per docstring. In 0.8.0, you could
attach multiple methods to the same block of Ruby source, such as:

@!method foo(a, b, c)
@!method bar(x, y, z)
Docstring for code
some_ruby_source

The above creates #foo and #bar and the source listing for both will
be some_ruby_source with "Docstring for code" as the docstring.

The attribute directive can take advantage of this functionality as well.
Note that these directives also do not need to be attached to a line of
code to be recognized; they can be in free-standing comments if the
methods are defined dynamically and not associated with any code.

New @!parse directive to parse Ruby code

A new {tag:!parse} directive was added that allows a developer to have
YARD parse code that might not necessarily be parseable in its original
form. This is useful when using instance_eval and other dynamic
meta-programming techniques to define methods or perform functionality.
For instance, a common case of the "self.included" callback in module
to extend a module on a class might be in the form:

def self.included(mod)
 mod.extend(self)
end

Unfortunately, this does not get picked up by YARD, but on the original
class, we can add:

class MyClass
 # @!parse extend TheDynamicModule
 include TheDynamicModule
end

YARD will then parse the code extend TheDynamicModule as if
it were in the source file.

You can also use this technique to register regular methods as
attributes, if you did not define them with attr_* methods:

def foo; @foo end
def foo=(v) @foo = v end

Register them as methods:
@!parse attr_accessor :foo

Backward incompatible changes to @!macro directive

Unfortunately, in order to create the new directives architecture,
some previously supported syntax in @macro tags are no longer supported.
Specifically, macros can no longer expand text on an entire docstring.
Instead, macros only expand the data that is indented inside of the tag
text.

This syntax is no longer supported:

@macro mymacro
Expanding text $1 $2 $3
property :a, :b, :c

In 0.7.0 to 0.7.5, the above would have created a method with the docstring
"Expanding text a b c". This will not work in 0.8.0. Instead, you must
indent all the macro expansion data so that it is part of the @macro
tag as follows:

@!macro mymacro
Expanding text $1 $2 $3
property :a, :b, :c

Note that we also use the recommended @!macro syntax, though @macro
is still supported.

Added --embed-mixin(s) to embed mixins into class docs (0.8.0)

Methods from mixins can now be embedded directly into the documentation
output for a class by using --embed-mixin ModuleName, or --embed-mixins
for all mixins. This enables a documentation writer to refactor methods
into modules without worrying about them showing up in separate files
in generated documentation. When mixin methods are embedded, they
show up in both the original module page and the pages of the classes
they are mixed into. A note is added to the method signature telling the
user where the method comes from.

The --embed-mixin command-line option can also take wildcard values
in order to match specific namespaces. For instance, you can embed
only mixins inside of a "Foo::Bar" namespace by doing:

!!!sh
$ yard doc --embed-mixin "Foo::Bar::*"

Internationalization (I18n) support for translating docs

YARD now ships with the beginnings of internationalization support
for translating documentation into multiple languages. The
yard i18n command now allows you to generate ".pot" and ultimately
".po" files for translation with gettext [http://www.gnu.org/software/gettext].

Note that this tool is a small step in the larger transition for
proper I18n support in YARD. We still have to add proper gettext
support to our templates for proper generation in multiple languages,
but this tool allows you to get started in translating your
documents. Improved I18n support will come throughout the 0.8.x series.

New C parser / handlers architecture (0.8.0)

The C parser was completely rewritten to take advantage of YARD's
parser and handler architecture. This means more YARD will be more robust
when parsing failures occur, tags and directives will now work consistently
across Ruby and CRuby files ({tag:!group} will now work, for instance),
and developers can now write custom handlers that target CRuby source files.

YARD will now warn if @param name not in method params (0.8.0)

YARD will now give you a warning if you use a @param tag in your
source but give an invalid parameter name. This should catch a lot of
common documentation errors and help keep your documentation consistent.

Added support for module_function calls in Ruby code (0.8.0)

The module_function command in Ruby is now supported in Ruby files.
It defines two separate methods, one class and one instance method,
both having the exact same docstring, and marks the instance method
as private.

Greatly improved tag documentation using custom template (0.8.0)

We have completely revamped the {docs/Tags.md} to include documentation
for each meta-data tag and directive with at least one useful example
for each one. This was done using template customization and extension
available within YARD.

Tags can now contain '.' for namespacing (0.8.0)

Prior to 0.8.0, tags could only contain alphanumeric characters and
underscore. YARD now allows the '.' character in tag names, and it
is now recommended for namespacing project-specific custom tags.
YARD has its own set of custom tags that are namespaced in this
way (using the "yard.tagname" namespace). The namespace recommendation
is to use "projectname.tagname", or "projectname.component.tagname".

Added "frames" links for non-framed pages for better nav (0.8.0)

Frames navigation has always had a "(no frames)" link to get rid
of the frameset. YARD 0.8.0 introduces a "(frames)" link on non-framed
pages to reverse this, allowing you to navigate between framed and
frameless pages seamlessly.

Added Gemfile support to YARD server for local gem sets (0.8.0)

The yard server command now supports --gemfile to serve gems
from a Gemfile.lock, instead of all system-wide gems.

Server now displays README on index route like static docs (0.8.0)

The yard server command will now behave like static docs regarding
the index action for a project, listing the README file if present
before displaying the alphabetic index. Note that the route for
the alphabetic index page has now moved to the explicit '/index' action.

Added line numbers to yard stats --list-undoc --compact (0.8.0)

Line numbers are now listed in the compact listing of undocumented objects
so that they can be more easily located in the files.

Single object db now default (multi-object db unsupported) (0.8.0)

YARD previously would split the .yardoc db into multiple marshal files
for load-time performance reasons if it grew past a specific number of
objects. This check is now disabled, and YARD will never automatically
switch to a multi-object DB. YARD will now always use the single object
db unless explicitly set with --no-single-db. If YARD is taking a
long time to load your .yardoc database, you can try using this
option to split your database into multiple files, but note that this
can cause problems with certain codebases (specifically, if you
have class methods using the same name as a module/class).

Added --api tag to generate documentation for API sets (0.8.1)

You can now use yardoc --api APINAME to generate documentation only
for objects with the @api APINAME tag (or any parent namespace objects,
since this tag is transitive). Multiple --api switches may be used to
generate documentation for multiple APIs together. The following generates
documentation for both the "public" and "developer" APIs, also including
any objects with undefined API (via --no-api):

$ yard doc --api public --api developer --no-api

Note that if you use --api, you must ensure that you also add @api
tags to your namespace objects (modules and classes), not just your methods.
If you do not want to do this, you can also include all objects with no
@api tag by using --no-api as shown above.

Remember that applying an @api tag to a class or module will apply it
to all children that do not have this tag already defined, so you can
declare an entire class public by applying it to the class itself. Note
also that these tags can be overridden by child elements if the tag is
re-applied to the individual object.

This feature is a simplified version of the more powerful --query
switch. The query to display the same API documentation as the
above example would be:

$ yard doc --query '!@api || @api.text =~ /^(public|private)$/'

But note that --query does not work when YARD is in "safe mode"
due to security concerns, whereas --api works in either mode.
This enables --api to function on remote documentation sites like
rubydoc.info [http://rubydoc.info].

Added --non-transitive-tag to disable transitive tag (0.8.3)

You can now use --non-transitive-tag to disable transitivity on
tags that are defined as transitive by default. For instance, in
some cases you might not want the @api tag to apply to all methods
when you define it on a class. Only the class itself has a specific
@api tag. To do this, you can mark @api as non-transitive with:

$ yard doc --non-transitive-tag api --api some_api

Which will avoid classifying treating @api as a transitive tag
when parsing modules and classes.

Added -B/--bind to bind to a port in yard server (0.8.4)

You can now bind the yard server command to a given local port
with yard server -B PORT or yard server --bind PORT.

Added asciidoc markup type support (0.8.6)

Support for the AsciiDoc markup type is now introduced using the asciidoc
markup type (yard doc -m asciidoc). Requires the
asciidoctor [http://rubygems.org/gems/asciidoctor] RubyGem library to be
installed before running YARD.

Added yard markups command to list available markup types (0.8.6)

You can now list all available markup types and their respective providers by
typing yard markups. This list also includes the file extensions used to
auto-identify markup types for extra files and READMEs. To use a markup in
the list, call yard doc with -m MARKUP_TYPE. To select a specific markup
provider library, pass the -M PROVIDER_NAME option.

Added yard display command to display formatted objects (0.8.6)

This feature requires the .yardoc registry to have already been
 generated. To generate the registry, run yard doc -n.

You can now display a single object (or a list of objects) in the YARD registry
using the yard display OBJECT ... command. For example, to display the
YARD::CodeObjects module as text (the way it is displayed in yri), type:

$ yard display YARD::CodeObjects

You can also format individual objects as HTML. For example, you can format
the above object as HTML and pipe the contents into a file readable by a
web browser:

$ yard display -f html YARD::CodeObjects > codeobjects.html

Custom templating options from yard doc can also be used, see
yard display --help for more options.

Added --layout to yard display command (0.8.6.1)

The yard display command now accepts --layout to wrap content in a layout
template. Currently the layout and onefile layout templates are supported,
though any template can be used. If no parameter is specified, the layout will
default to the layout template. Example usage:

$ yard display --layout onefile -f html YARD::CodeObjects > codeobjects.html

The above generates a codeobjects.html file that is self-contained with
CSS stylesheets and JavaScript code. This is similar to calling
yard doc --one-file with only the YARD::CodeObjects object in the registry.

Note that even though this uses the onefile template, the README file will not
be auto-included the way it is with the yard doc command. To include the
README text at the top of the onefile template, pass the --readme switch:

$ yard display --layout onefile -f html --readme README.md OBJECT > out.html

What's New in 0.7.x?

	Macro support and detection of DSL methods (0.7.0)

	Inherited attributes now show in HTML output (0.7.0)

	The 'app' directory is now parsed by default (0.7.0)

	Added support for metadata (@title, @markup) in extra files/readmes (0.7.0)

	Added yard list command (alias for yardoc --list) (0.7.0)

	Added Git support in yard diff (0.7.0)

	Added {include:file:FILENAME} syntax (0.7.0)

	Added {render:OBJECT} syntax to embed object docs in extra files (0.7.0)

	Added improved templates API for custom CSS/JS/menus (0.7.0)

	Added Ruby markup type (-m ruby) (0.7.0)

	Added state tracking variables to Parser/Handler architecture (0.7.0)

	Added before/after callbacks to SourceParser (0.7.0)

	Can now use --yardopts FILE to specify a custom yardopts file (0.7.0)

	Added new -t guide template for guide based docs (0.7.0)

	Github Flavoured Markdown now works out-of-box (0.7.4)

	Added -m textile_strict and -m pre markup types (0.7.4)

	Reorganized markup types 'text' and 'none' (0.7.4)

	Add support for rb_define_alias (0.7.4)

Macro support and detection of DSL methods (0.7.0)

YARD will now automatically detect class level method calls, similar to the
way it knows what an attr_accessor is. By simply adding documentation to
your class level declarations, YARD can automatically detect them as methods
or attributes in your class. Consider DataMapper's "property" declaration:

class Post
 # @attribute
 # @return [String] the title of the post
 property :title, String
end

The above declaration would be created as the Post#title. The optional
@attribute tag tells YARD that the property is an "attribute", and not just
a regular method.

In addition to basic DSL method detection, YARD also supports macros to create
docstrings that can be copies to other objects; these macros can also be
"attached" to class level methods to create implicit documentation for macros.

Macros and DSL method detection are discussed in much more detail in the
{file:docs/GettingStarted.md}, so you should read about them there if you're
interested in this feature.

Inherited attributes now show in HTML output (0.7.0)

Inherited attributes will now show up in HTML documentation using the default
template in the same manner that inherited methods do.

The 'app' directory is now parsed by default (0.7.0)

YARD tries to follow the "It Just Works" attitude in writing developer tools,
and therefore has added app/**/*.rb to the default list of globs that it
searches for code in. You no longer need to create a .yardopts just to
list your app directory when documenting your code on rubydoc.info.
We should have done this a while ago! And don't worry, YARD still checks
lib and ext by default, too.

Added support for metadata (@title, @markup) in extra files/readmes (0.7.0)

Extra files (READMEs, ChangeLogs, LICENSE files, and other guides) now support
metadata tags, just like docstrings in code comments. By adding @tag values
to the top of a file (no whitespace preceding it) inside of a # comment line,
YARD will detect and parse these tags and store it for later usage.

Tags can contain arbitrary data as well as arbitrary tag names, however the
tag names @title and @markup are reserved to specify the document title and
markup format respectively. The title will be used in the file list menu,
index page, as well as any linking of the file via the {file:Filename}
syntax. An example of a document with metadata would be:

@title The Best Project Ever!
@markup rdoc
@author Foo Bar (custom tag, does not display in templates)

= This Project Rules

== Contents

...

Note that previous versions of YARD recommended specifying the markup of an
extra file with the #!markup shebang, but the @markup metadata tag is now
the "best practice" for specifying the markup format of an extra file.

Added yard list command (alias for yardoc --list) (0.7.0)

The yardoc --list command is used to list objects that are parsed from
a codebase. This can be used to grep methods/classes in a codebase from the
command line. yard list now calls yardoc --list as a convenience command.

Note that the yardoc --list command may eventually be replaced by a more
feature-filled yard list command, so yard list should be used instead of
yardoc --list when possible.

Added Git support in yard diff (0.7.0)

The yard diff command can now perform object diffing on git repositories.
Provide the --git switch to yard diff with 2 commit/branches like so:

$ yard diff --git HEAD~5 HEAD
Added objects:

 YARD::Parser::SourceParser#contents
 YARD::Parser::SourceParser#globals
 ...

Added {include:file:FILENAME} syntax (0.7.0)

You can now use the {include:file:FILENAME} syntax to embed the contents
of an extra file marked up in its markup format. This syntax supports embedding
Ruby source files and performing syntax highlighting on the code.

Added {render:OBJECT} syntax to embed object docs in extra files (0.7.0)

You can now use the {render:Object} syntax to embed the documentation
rendering of an entire object (method, class, module) inside of an extra file.
This is useful when writing non-API based guides that might require listing
a few helper methods or classes. The {file:docs/GettingStarted.md} discussed
this syntax in more detail (with example usage).

Added improved templates API for custom CSS/JS/menus (0.7.0)

Plugin & template developers can now more easily insert custom stylesheet
or JavaScript files in their customized templates, thanks to an abstraction
of the template API. This is documented in the {docs/Templates.md} document.
In addition to custom CSS/JS, developers can also create custom menu tabs
in both the framed and non framed version of the default theme.

Added Ruby markup type (-m ruby) (0.7.0)

The Ruby markup type (-m ruby) will now use syntax highlighting for all
formatting. This is probably not useful as a global switch, but can be used
on individual extra files using the metadata markup specification discussed
above.

Added state tracking variables to Parser/Handler architecture (0.7.0)

The parser and handler architecture now contain state variables
{YARD::Handlers::Base#extra_state} and {YARD::Handlers::Processor#globals}
to share data across handlers and the entire processing phase. #extra_state
provided a place to store per-file data, while #globals gives the developer
access to inter-file state when parsing multiple files at once.

Added before/after callbacks to SourceParser (0.7.0)

The {YARD::Parser::SourceParser} class can now register callbacks to execute
code before and after parsing of file globs, as well as before and after
parsing of individual files. This allows plugin developers to perform
setup/teardown (and set global state or update the {YARD::Registry}).

See the documentation for the following methods:

	{YARD::Parser::SourceParser.before_parse_list}

	{YARD::Parser::SourceParser.after_parse_list}

	{YARD::Parser::SourceParser.before_parse_file}

	{YARD::Parser::SourceParser.after_parse_file}

Can now use --yardopts FILE to specify a custom yardopts file (0.7.0)

The yardoc command now supports --yardopts FILE to specify custom .yardopts
options files. This is useful if you have multiple documentation sets, such
as a guide documentation set and an API documentation set.

Added new -t guide template for guide based docs (0.7.0)

You can now write guide style documentation using a new 'guide' template that
only generates documentation for extra files. You would use it in the form:

yardoc -t guide - README GettingStarted FAQ TroubleShooting LICENSE

This creates the sections for the readme, a getting started, frequently asked
questions, trouble shooting and license page.

If you need to refer to class / method documentation, you can embed API documentation
using the {render:Object} tag discussed above.

Github Flavoured Markdown now works out-of-box (0.7.4)

Due to the growing popularity of Github-Flavoured-Markdown (GFM), YARD now uses
the Redcarpet library as the default Markdown formatting library with GFM fenced
code blocks enabled. This means that you can use fenced code blocks inside of
Markdown files with redcarpet installed without any extra code. Previously, users
who wanted GFM in their Markdown would have to specify -m markdown -M redcarpet,
but this is now the default behaviour for YARD.

Note that you can still specify language types in code blocks without GFM in YARD
by using the "!!!lang" prefix syntax. For example (plain means no markup):

!!!plain
!!!plain
Some code
block here.

The GFM version would be:

!!!plain
```plain
Some code
block here.
```


Added -m textile_strict and -m pre markup types (0.7.4)

A new "textile_strict" markup type was added which behaves exactly like "textile"
except it enables hard breaks, so newlines behave as line breaks in the HTML
(using
 tags). This option is added for users who want the classic textile
behaviour.

Reorganized markup types 'text' and 'none' (0.7.4)

Due to the new pre markup type, the behaviour for text and none were slightly
reorganized to be more intuitive. The following behaviours now represent these
markup types:

	pre: Used to wrap text inside <pre> tags

	text: No formatting except for hard breaks (
) on newlines

	none: No formatting at all.

In all cases, HTML is escaped from input. If you want no HTML escaping, use the
html markup type.

Add support for rb_define_alias (0.7.4)

CRuby code can now make use of the rb_define_alias function. Documentation
for aliases is not supported, however.

What's New in 0.6.x?

	Local documentation server for RubyGems or projects (yard server) (0.6.0)

	Groups support for method listing (0.6.0)

	Single file template (--one-file) support (0.6.0)

	yard CLI executable with pluggable commands (0.6.0)

	yard diff command to object-diff two versions of a project (0.6.0)

	Added --asset option to yardoc (0.6.0)

	New template API (0.6.0)

	HTML template now adds inline Table of Contents for extra files pages (0.6.0)

	Removed --incremental in favour of --use-cache (0.6.0)

	Ad-hoc tag registration via yardoc CLI (--tag, etc.) (0.6.0)

	Added --transitive-tags to register transitive tags (0.6.0)

	yardoc now displays RDoc-like statistics (--no-stats to hide) (0.6.0)

	yri now works on constants (0.6.0)

	Plugins are no longer auto-loaded (added --plugin switch) (0.6.2)

	Added YARD::Config API and ~/.yard/config configuration file (0.6.2)

	Added yard config command to view/edit configuration (0.6.2)

	Added yard server -t template path switch (0.6.2)

	Added YARD::Server.register_static_path for static server assets (0.6.2)

	YARD::Registry is now thread local (0.6.5)

	Support for ripper gem in Ruby 1.8.7 (0.6.5)

Local documentation server for RubyGems or projects (yard server) (0.6.0)

The new yard server command spawns a documentation server that can serve
either documentation for a local project or installed RubyGems. The server
will host (by default) on http://localhost:8808.

To serve documentation for the active project (in the current directory):

$ yard server

The server can also run in "incremental" mode for local projects. In this
situation, any modified sources will immediately be updated at each request,
ensuring that the server always serve the code exactly as it is on disk.
Documenting your code in this fashion essentially gives you an efficient a
live preview without running a separate command everytime you make a change.
To serve documentation for the active project in incremental mode:

$ yard server --reload

Note that in incremental mode, objects or method groupings
cannot be removed. If you have removed objects or modified groupings, you
will need to flush the cache by deleting .yardoc and (optionally)
restarting the server.

The documentation server can also serve documentation for all installed gems
on your system, similar to gem server, but using YARD's functionality and
templates. To serve documentation for installed gems:

$ yard server --gems

Documentation for the gem need not be previously generated
at install-time. If documentation for the gem has not been generated, YARD
will do this for you on-the-fly. It is therefore possible to speed up your
gem installs by using gem install GEMNAME --no-rdoc without repercussion.
You can also add this switch to your ~/.gemrc file so that you don't need
to re-type it each time. See this link [http://stackoverflow.com/questions/1789376/how-do-i-make-no-ri-no-rdoc-the-default-for-gem-install]
for exact instructions.

Groups support for method listing (0.6.0)

You can now organize methods in a class/module into logical separated groups.
These groups apply lexically and are listed in the order they are defined.
For instance, to define a group:

@group Rendering an Object

Documentation here
def foo; end

Extra documentation...
def bar; end

@group Another Group

def aaa; end

Note that these @group and @endgroup declarations are
not "tags" and should always be separated with at least 1 line of whitespace
from any other documentation or code.

In the above example, "Rendering an Object" will be listed with "foo" and
"bar" above "Another Group", even though "aaa" comes before the two other
methods, alphabetically. To end a group, use @endgroup. It is not necessary
to end a group to start a new one, only if there is an object following the
group that should not belong in any group.

@group Group 1

def foo; end

@endgroup

This method should not be listed in any group
def bar; end

Single file template (--one-file) support (0.6.0)

yardoc now has the --one-file option to generate a single-file template
for small scripts and libraries. In this case, any comments at the top of
the script file will be recognized as a README.

yard CLI executable with pluggable commands (0.6.0)

The yardoc and yri commands are not deprecated and can
continue to be used. They are shortcuts for yard doc and yard ri
respectively. However, yard-graph has been removed.

YARD now has a yard executable which combines all pre-existing and new
commands into a single pluggable command that is both easier to remember and
access. To get a list of commands, type yard --help.

If you are a plugin developer, you can create your own yard command by first
subclassing the {YARD::CLI::Command} class and then registering this class
with the {YARD::CLI::CommandParser.commands} list. For instance:

YARD::CLI::CommandParser.commands[:my_command] = MyCommandClass

The above line will enable the user to execute yard my_command [options].

yard diff command to object-diff two versions of a project (0.6.0)

One of the built-in commands that comes with the new yard executable is the
ability to do object-oriented diffing across multiple versions of the same
project, either by 2 versions of a gem, or 2 working copies. Just like
regular diffing tells you which lines have been added/removed in a file,
object diffing allows you to see what classes/methods/modules have been
added/removed between versions of a codebase.

For an overview of how to use yard diff, see YARD Object Oriented Diffing [http://gnuu.org/2010/06/26/yard-object-oriented-diffing/].

yard stats to display statistics and undocumented objects (0.6.0)

YARD now outputs the following statistics when yard stats is run:

Files: 125
Modules: 35 (4 undocumented)
Classes: 139 (29 undocumented)
Constants: 53 (20 undocumented)
Methods: 602 (70 undocumented)
 85.16% documented

Note that these statistics are based on what you have set to show in your
documentation. If you use @private tags and/or do not display
private/protected methods in your documentation, these will not show up as
undocumented. Therefore this metric is contextual.

You can also specifically list all undocumented objects (and their file
locations) with the --list-undoc option.

Added --asset option to yardoc (0.6.0)

The yardoc command can now take the --asset option to copy over
files/directories (recursively) to the output path after generating
documentation. The format of the argument is "from:to" where from is the
source path and to is the destination. For instance, YARD uses the following
syntax in the .yardopts file to copy over image assets from the
'docs/images' directory into the 'images' directory after generating HTML:

--asset docs/images:images

New template API (0.6.0)

The new template API allows for easier insertion of sections within an
inherited template. You should no longer need to insert by index, an
error-prone process that could break when a template is updated. Instead of:

sections.last.place(:my_section).before(:another_section)

use:

sections.place(:my_section).before_any(:another_section)

You can see more in the {file:docs/Templates.md#Inserting_and_Traversing_Sections}
document.

HTML template now adds inline Table of Contents for extra files pages (0.6.0)

A table of contents is now generated dynamically using JavaScript for extra
file pages (such as README's, or this document). It is generated based off the
headers (h1,h2,... tags) used in the document, and can be floated to the
right or listed inline on the page.

Ad-hoc tag registration via yardoc CLI (--tag, etc.) (0.6.0)

Simple meta-data tags can now be added at the command-line and registered to
display in templates in a number of pre-defined ways. For instance, to create
a freeform text tag, use the following:

--tag my_tag_name:"My Tag Title"

You can also create a "typed" tag (similar to @return), a typed named tag
(similar to @param) as well as various combinations. The full list of
options are listed in yardoc --help under the "Tag Options" section.

If you wish to create a tag to store data but do not wish to show this data
in the templates, use the --hide-tag option to hide it from generated output:

--hide-tag my_tag_name

Added --transitive-tags to register transitive tags (0.6.0)

Transitive tags are tags that apply to all descendants of a namespace (class
or module) when documented on that namespace. For instance, the @since tag
is a transitive tag. Applying @since to a class will automatically apply
@since to all methods in the class. Creating a @since tag directly on a
method will override the inherited value.

You can specify transitive tags on the command-line by using this option. Note
that the tags must already exist (built-in or created with the --tag option)
to be specified as transitive. If you wish to do this programmatically, see
the {YARD::Tags::Library.transitive_tags} attribute.

yardoc now displays RDoc-like statistics (--no-stats to hide) (0.6.0)

As seen in the yard stats feature overview, yardoc displays RDoc-like
statistics when it is run. The output is equivalent to typing yard stats.
To hide this output when yardoc is run, use --no-stats.

yri now works on constants (0.6.0)

Templates have now been added for text view of constants, which displays any
documentation and the constant value.

Plugins are no longer auto-loaded (added --plugin switch) (0.6.2)

This is a backwards-incompatible change that disables plugins from automatically
loading when YARD starts up. From now on, you should manually declare which
plugins your project is using by adding --plugin PLUGINNAME to a .yardopts
file in the root of your project. You can also re-enable autoloaded plugins
by setting load_plugins to true in your configuration file (yard config load_plugins true,
see next item). You can also set autoload_plugins to a list of plugins
to be automatically loaded on start.

If you are a YARD plugin author, please make sure to inform your users of these
changes.

Note that --plugin switches passed on the commandline (not via .yardopts)
are parsed before commands are loaded, and therefore can add in new CLI commands.

Added YARD::Config API and ~/.yard/config configuration file (0.6.2)

There is a new global configuration API that can be accessed programmatically
and set via the ~/.yard/config file. The file is encoded as a YAML file,
and looks like:

:load_plugins: false
:ignored_plugins:
 - my_plugin
 - my_other_plugin
:autoload_plugins:
 - my_autoload_plugin
:safe_mode: false

You can also set configuration options via the command-line (see next item).

Added yard config command to view/edit configuration (0.6.2)

A new yard config command was created to view or edit the configuration
file via the commandline.

	To view the current configuration use yard config --list.

	To view a specific item use yard config ITEMNAME

	To modify an item value use yard config ITEMNAME VALUE

Added yard server -t template path switch (0.6.2)

The yard server command now accepts -t or --template-path to register
a new template path for template customization.

Added YARD::Server.register_static_path for static server assets (0.6.2)

The server now supports a command to register static asset paths. If you are
extending the YARD::Server modules, make sure to register your asset paths
through this method.

YARD::Registry is now thread local (0.6.5)

Creating a new thread will now implicitly load a new Registry that can be used
to parse and process new code objects independently of the other threads. Note
that this means you can no longer use the Registry across threads; you must
either access the threadlocal object directly, or synchronize threads to do
the processing in the initial registry's thread.

Support for ripper gem in Ruby 1.8.7 (0.6.5)

YARD now supports the Ruby 1.8.7 port of the ripper gem to improve parsing
of source, both in terms of performance and functionality. When the ripper
gem is available, YARD will use the "new-style" handlers. You can take advantage
of this functionality by performing a gem install ripper.

What's New in 0.5.x?

	Support for documenting native Ruby C code (0.5.0)

	Incremental parsing and output generation with yardoc -c (0.5.0, 0.5.3)

	Improved yri support to perform lookups on installed Gems (0.5.0)

	Added yardoc --default-return and yardoc --hide-void-return (0.5.0)

	Multiple syntax highlighting language support (0.5.0)

	New .yardoc format (0.5.0)

	Support for yard-doc-* gem packages as hosted .yardoc dbs (0.5.1)

	Support for extra search paths in yri (0.5.1)

	Generating HTML docs now adds frames view (0.5.3)

	Tree view for class list (0.5.3)

	Ability to specify markup format of extra files (0.5.3)

	Keyboard shortcuts for default HTML template (0.5.4)

Support for documenting native Ruby C code (0.5.0)

It is now possible to document native Ruby extensions with YARD with a new
C parser mostly borrowed from RDoc. This enables the ability to document
Ruby's core and stdlibs which will be hosted on http://yardoc.org/docs. In
addition, the .yardoc dump for the Ruby-core classes will become available
as an installable gem for yri support (see #3).

Incremental parsing and output generation with yardoc -c (0.5.0, 0.5.3)

Note: in 0.5.3 and above you must use --incremental
 to incrementally generate HTML, otherwise only parsing will be done
 incrementally but HTML will be generated with all objects. --incremental
 implies -c, so no need to specify them both.
YARD now compares file checksums before parsing when using yardoc -c
(aka yardoc --use-cache) to do incremental parsing of only the files that
have changed. HTML (or other output format) generation will also only be
done on the objects that were parsed from changed files (*). This makes doing
a documentation development cycle much faster for quick HTML previews. Just
remember that when using incremental output generation, the index will not
be rebuilt and inter-file links might not hook up right, so it is best to
perform a full rebuild at the end of such previews.

(*) Only for versions prior to 0.5.3. For 0.5.3+, use --incremental for
incremental HTML output.

Improved yri support to perform lookups on installed Gems (0.5.0)

The yri executable can now perform lookups on gems that have been parsed
by yard. Therefore, to use this command you must first parse all gems with
YARD. To parse all gems, use the following command:

$ sudo yardoc --build-gems

The above command builds a .yardoc file for all installed gems in the
respective gem directory. If you do not have write access to the gem path,
YARD will write the yardoc file to ~/.yard/gem_index/NAME-VERSION.yardoc.

Note: you can also use --re-build-gems to force re-parsing of all gems.

You can now do lookups with yri:

$ yri JSON

All lookups are cached to ~/.yard/yri_cache for quicker lookups the second
time onward.

Added yardoc --default-return and yardoc --hide-void-return (0.5.0)

YARD defaults to displaying (Object) as the default return type of any
method that has not declared a @return tag. To customize the default
return type, you can specify:

$ yardoc --default-return 'MyDefaultType'

You can also use the empty string to list no return type.

In addition, you can use --hide-void-return to ignore any method that
defines itself as a void type by: @return [void]

Multiple syntax highlighting language support (0.5.0)

YARD now supports the ability to specify a language type for code blocks in
docstrings. Although no actual highlighting support is added for any language
but Ruby, you can add your own support by writing your own helper method:

Where LANGNAME is the language:
def html_syntax_highlight_LANGNAME(source)
 # return highlighted HTML
end

To use this language in code blocks, prefix the block with !!!LANGNAME:

!!!plain
!!!python
def python_code(self):
 return self

By the same token. you can now use !!!plain to ignore highlighting for
a specific code block.

New .yardoc format (0.5.0)

To make the above yri support possible, the .yardoc format was redesigned
to be a directory instead of a file. YARD can still load old .yardoc files,
but they will be automatically upgraded if re-saved. The new .yardoc format
does have a larger memory footprint, but this will hopefully be optimized
downward.

Support for yard-doc-* gem packages as hosted .yardoc dbs (0.5.1)

You can now install special YARD plugin gems titled yard-doc-NAME to get
packaged a .yardoc database. This will enable yri lookups or building docs
for the gem without the code.

One main use for this is the yard-doc-core package, which enabled yri
support for Ruby core classes (stdlib coming soon as yard-doc-stdlib).
To install it, simply:

$ sudo gem install yard-doc-core
now you can use:
$ yri String

This will by default install the 1.9.1 core library. To install a library
for a specific version of Ruby, use the --version switch on gem:

$ sudo gem install --version '= 1.8.6' yard-doc-core

Support for extra search paths in yri (0.5.1)

You can now add custom paths to non-gem .yardoc files
by adding them as newline separated paths in ~/.yard/yri_search_paths.

Generating HTML docs now adds frames view (0.5.3)

yardoc will now create a frames.html file when generating HTML documents
which allows the user to view documentation inside frames, for those users who
still find frames beneficial.

Tree view for class list (0.5.3)

The class list now displays as an expandable tree view to better organized an
otherwise cluttered namespace. If you properly namespace your less important
classes (like Rails timezone classes), they will not take up space in the
class list unless the user looks for them.

Ability to specify markup format of extra files (0.5.3)

You can now specify the markup format of an extra file (like README) at the
top of the file with a shebang-like line:

#!textile
contents here

The above file contents will be rendered with a textile markup engine
(eg. RedCloth).

Keyboard shortcuts for default HTML template (0.5.4)

You can now access the "Class List", "Method List" and "File List" with the
'c', 'm' and 'f' keyboard shortcuts in the default HTML template, allowing
for keyboard-only navigation around YARD documentation.

API for registering custom parsers (0.5.6)

You can now register parsers for custom source languages by calling the
following method:

SourceParser.register_parser_type(:java, MyJavaParser, 'java')

The parser class MyJavaParser should be a subclass of {YARD::Parser::Base},
and the last argument is a set of extensions (string, array or regexp). You
can read more about registering parsers at the {YARD::Parser::SourceParser}
class documentation.

What's New in 0.4.x?

	New templating engine and templates

	yardoc --query argument

	Greatly expanded API documentation

	New plugin support

	New tags (@abstract, @private)

	Default rake task is now rake yard

New templating engine and templates

The templates were redesigned, most notably removing the ugly frameset, adding
search to the class/method lists, simplifying the layout and making things
generally prettier. You should also notice that more tags are now visible in
the templates such as @todo, the new @abstract and @note tags and some others
that existed but were previously omitted from the generated documentation.

There is also a new templating engine (based on the tadpole templating library)
to allow for much more user customization. You can read about it in
{file:docs/Templates.md}.

yardoc --query argument

The yardoc command-line tool now supports queries to select which classes,
modules or methods to include in documentation based on their data or meta-data.
For instance, you can now generate documentation for your "public" API only by
adding "@api public" to each of your public API methods/classes and using
the following argument:

--query '@api.text == "public"'

More information on queries is in the {file:README.md}.

Greatly expanded API documentation

Last release focused on many how-to and architecture documents to explain
the design of YARD, but many of the actual API classes/methods were still
left undocumented. This release marks a focus on getting YARD's own documentation
up to par so that it can serve as an official reference on the recommended
conventions to use when documenting code.

New plugin support

YARD now supports loading of plugins via RubyGems. Any gem named yard-* or
yard_* will now be loaded when YARD starts up. Note that the '-' separator
is the recommended naming scheme.

To ignore plugins, add the gem names to ~/.yard/ignored_plugins on separate
lines (or separated by whitespace).

New tags (@abstract, @private)

Two new tags were added to the list of builtin meta-tags in YARD. @abstract
marks a class/module/method as abstract while @private marks an object
as "private". The latter tag is used in situations where an object is public
due to Ruby's own visibility limitations (constants, classes and modules
can never be private) but not actually part of your public API. You should
use this tag sparingly, as it is not meant to be an equivalent to RDoc's
:nodoc: tag. Remember, YARD recommends documenting private objects too.
This tag exists so that you can create a query (--query !@private) to
ignore all of these private objects in your documentation. You can also
use the new --no-private switch, which is a shortcut to the aforementioned
query. You can read more about the new tags in the {file:docs/GettingStarted.md}
guide.

Default rake task is now rake yard

Not a big change, but anyone using the default "rake yardoc" task should
update their scripts:

http://github.com/lsegal/yard/commit/ad38a68dd73898b06bd5d0a1912b7d815878fae0

What's New in 0.2.3.x?

	Full Ruby 1.9 support

	New parser code and handler API for 1.9

	A new @overload tag

	Better documentation

	Template changes and bug fixes

Full Ruby 1.9 support

YARD's development actually focuses primarily on 1.9 from the get-go, so it is
not an afterthought. All features are first implemented for compatibility with
1.9, but of course all functionality is also tested in 1.8.x. YARD 0.2.2 was
mostly compatible with 1.9, but the new release improves and extends in certain
areas where compatibility was lacking. The new release should be fully functional
in Ruby 1.9.

New parser code and handler API for 1.9

Using Ruby 1.9 also gives YARD the advantage of using the new ripper library
which was added to stdlib. The ripper parser is Ruby's official answer to
projects like ParseTree and ruby2ruby. Ripper allows access to the AST as it
is parsed by the Ruby compiler. This has some large benefits over alternative
projects:

	It is officially supported and maintained by the Ruby core team.

	The AST is generated directly from the exact same code that drives the
compiler, meaning anything that compiles is guaranteed to generate the
equivalent AST.

	It needs no hacks, gems or extra libs and works out of the box in 1.9.

	It's fast.

Having the AST means that developers looking to extend YARD have much better
access to the parsed code than in previous versions. The only caveat is that
this library is not back-compatible to 1.8.x. Because of this, there are
subtle changes to the handler extension API that developers use to extend YARD.
Namely, there is now a standard API for 1.9 and a "legacy" API that can run in
both 1.8.x and 1.9 if needed. A developer can still use the legacy API to write
handlers that are compatible for both 1.8.x and 1.9 in one shot, or decide to
implement the handler using both APIs. Realize that the benefit of using the new
API means 1.9 users will get a 2.5x parsing speed increase over running the legacy
handlers (this is in addition to the ~1.8x speed increase of using YARV over MRI).

A new @overload tag

The new @overload tag enables users to document methods that take multiple
parameters depending on context. This is basically equivalent to RDoc's call-seq,
but with a name that is more akin to the OOP concept of method overloading
that is actually being employed. Here's an example:

 # @overload def to_html(html, autolink = true)
 # This docstring describes the specific overload only.
 # @param [String] html the HTML
 # @param [Boolean] autolink whether or not to atuomatically link
 # URL references
 # @overload def to_html(html, opts = {})
 # @param [String] html the HTML
 # @param [Hash] opts any attributes to add to the root HTML node
 def to_html(*args)
 # split args depending on context
 end

As you can see each overload takes its own nested tags (including a docstring)
as if it were its own method. This allows "virtual" overloading behaviour at
the API level to make Ruby look like overload-aware languages without caring
about the implementation details required to add the behaviour.

It is still recommended practice, however, to stay away from overloading when
possible and document the types of each method's real parameters. This allows
toolkits making use of YARD to get accurate type information for your methods,
for instance, allowing IDE autocompletion. There are, of course, situations
where overload just makes more sense.

Better documentation

The first few iterations of YARD were very much a proof of concept. Few people
were paying attention and it was really just pieced together to see what was
feasible. Now that YARD is gaining interest, there are many developers that
want to take advantage of its extensibility support to do some really cool stuff.
Considerable time was spent for this release documenting, at a high level, what
YARD can do and how it can be done. Expect this documentation to be extended and
improved in future releases.

Template changes and bug fixes

Of course no new release would be complete without fixing the old broken code.
Some tags existed but were not present in generated documentation. The templates
were mostly fixed to add the major omitted tags. In addition to template adjustments,
many parsing bugs were ironed out to make YARD much more stable with existing projects
(Rails, HAML, Sinatra, Ramaze, etc.).

 _images/handlers-class-diagram.png
Base
|+ #parser [R]
|+ #statement [R]
#owner RW o
Processor |# #namespace [RW]
TR [sisibilty [RW]
|+ #namespace [RW] [##scope [RI]
|+ #scope RW uses | lear_subciasses
|+ #owner [RW) |+ handlers
|+ #l0ad_order_errors [RW] |+ handles
|+ #parser_type [RW] | handles?
[+#find_handlers |+ inherited
|+ iniiaize |+ namespace_only
| #orocess |+ namespace_only?
+ subclasses
+ sinialize
|+ #parse_block
|+ #orocess
ruby
legacy
Base
Base
[+ nandies?
[+ nandies?
WixinHandier | | Moduleandier | | [AliasHandler
[+#orocess [+#orocess [+#orocess -
Attributeandier] | [ClassHandler
ExtendHandler Legacy handlers implement
[+ #orocess [+ #orocess e same handiers as
[+ #process the standard Ruby handers.
WethodHandler | | [ConstantHandier
[+#orocess [+#orocess
VisibilityHandler ClassVariableHandler
[+ #orocess [+#orocess

_images/overview-class-diagram.png
Code Parsing & Processing

Data Storage

cods_objects

[v L frmaspacaomd

Froy

Ay

MethodObject

MaduleObject

b Registy

Canstantobject

[Classobject]

ClassVariableObject

PosliProcessing & Output Generation

generators

handlers

ase |4 [FulDosGensrator

ruby

QuickDacGenerator

H{ = |

Frocessor| [iegan

y

T

[ModuleHander]

Base

Aﬁ

[ClassHandier] !

WethadGenerator

MethodSignatureGenerator

[Each class name correlates
fwith 3 directory in the
fterplates directory

Staterent

£

TokenList |- -

parser]
SourceParser -
by 1 j
12
Ruspparser]| [iegaey |
T
StatementList| [RubyLex
P
Siods T

_images/code-objects-class-diagram.png
class NamespaceObject

+ #children [R]

+ #cvars [R]

+ #meths [R]

+ #constants [R]

+ #attributes [R]

+ #aliases [R]

+ itclass_mixins [R]

+ #instance_mixins [R]

+ #child
+ #class_attributes
+ #included constants
+ #included meths
+ #instance_attributes

+ #mixins A

CadeObjects

class Base.

+ #tname [R]

+ #iles [R]

+ f#namespace [RW]
+ #source [RW]

+ #signature (RW]
+ #docstring [RW]
+ #dynamic [RW]

+ #tdynamic?
+#ile : String
+i#has tag?

+ #initialize

+ #tinspect

+ #line : Fixnum
+#method_missing
+#path

+#tag

+#tags

+ #type : Symbol

Class MethodObject
+ #visibility [RW]

+ ##scope [RW]

class ConstantObject | [class ClassVariableObject

+ texplicit [RW]

+ #parameters [RW] | | + #value [RW]

+ #aliases

+#is_alias?
+#is_attribute?
+ #is_explicit?

class ClassObject

class ModuleObject

+ #superclass [RW]

+ #inheritance tree

T

class RootObject

+ #inheritance_tree
+ #inherited_constants
+ f#inherited_meths

+ #is_exception?

class Proxy

+ #namespace [R]
+ #tname [R]

+ #initialize
+ #inspect

+ #instance of?

+ s a?

+ #kind_of?

+ #fmethiod_missing
+#path

+ #respond to?
+#type

+ #Lype

class CodeObjectList < Array

+ #initialize
+ #push

_static/ajax-loader.gif

_images/parser-class-diagram.png
YARD: Parser |

<<abstract>> Base

[+ #initialize(source, filename)
|+ #parse
|+ #tokenize

‘SourceParser

[~parser_tpe (R]
[+ #tle (R]
|+ #parser_type (R

[“parse
{+ parse_string

e o |+ parser_type_for_extension
|+ register_parser_type
+ tokenize
|+ #parse
|+ #tokenize
Rudy
CParser
Legacy
RubyParser RubyParser StatementList < Array
ko
. TokenList < Array Y
L | statement
T
‘:Ly:'e[m\ll;]m |+ #okens [R]
Faocsng R ¥ e
|+ #file [RW]
|+ #source [RW] Token e
|+ #source_range [RW] |+ #text [R]
|+ #line_range |+# line_no [R]
[+ #call? |+ #char_no [R]
-+ chilaren
+ #condition?
|+ #stine
|+ #has_line?
|+ sump
|+ ow?
|+ #ine
|+ siteral
|+ #rer2
|+ #token?
|+ #raverse

_images/tags-class-diagram.png
DefaultFactory

Library
"~ Tabels [R] [+#parse_tag- Tag

-+ defaul_factory [RW] uses _|*#parse_tag_with_name Tag

-+ #actory [RW] |+ #parse_tag_witn_options - Tag

- Gefine_tag. |+ #parse_tag_with_raw_text: Tag

-+ sorted_labels : Array<Symbol> |+ #parse_tag_with_raw_tle_and_text: Tag

-+ #initial |+ #parse_tag_with_types - Tag
|+ #parse_tag_with_types_and_name : Tag

|+ #parse_tag_with_types_and_name_and_defaut: Tag

reates
Tag
 [egnemer Smbol
RefTag [+ #extRI: String
[+ #owner R |+ #ypes [R)- Array<string>
——— |+ #name [R] : String
|+ #object [RW] - CodeObjects:Base
[~ #inialize
|+ #ype - string
OverioadTag DefaultTag OptionTag
|+ #signature [R] [+ #defaulls [R] |+ #oair RW
|+ #parameters [R]
|+ #docsting [R]
[+#has_tag?
|+ #inspect
|+ #method_missing
- #tag
| #tags

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

